1,424 research outputs found
Field-induced structural aging in glasses at ultra low temperatures
In non-equilibrium experiments on the glasses Mylar and BK7, we measured the
excess dielectric response after the temporary application of a strong electric
bias field at mK--temperatures. A model recently developed describes the
observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig,
P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our
results on both samples can be described by including an additional mechanism
to the mentioned model with temperature independent decay times of the excess
dielectric response. As the origin of this novel process beyond the "tunneling
model" we suggest bias field induced structural rearrangements of "tunneling
states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version
Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations
Consider a large Boolean network with a feed forward structure. Given a
probability distribution on the inputs, can one find, possibly small,
collections of input nodes that determine the states of most other nodes in the
network? To answer this question, a notion that quantifies the determinative
power of an input over the states of the nodes in the network is needed. We
argue that the mutual information (MI) between a given subset of the inputs X =
{X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies
the determinative power of this set of inputs over node i. We compare the
determinative power of a set of inputs to the sensitivity to perturbations to
these inputs, and find that, maybe surprisingly, an input that has large
sensitivity to perturbations does not necessarily have large determinative
power. However, for unate functions, which play an important role in genetic
regulatory networks, we find a direct relation between MI and sensitivity to
perturbations. As an application of our results, we analyze the large-scale
regulatory network of Escherichia coli. We identify the most determinative
nodes and show that a small subset of those reduces the overall uncertainty of
the network state significantly. Furthermore, the network is found to be
tolerant to perturbations of its inputs
Sparse random matrices and vibrational spectra of amorphous solids
A random matrix approach is used to analyze the vibrational properties of
amorphous solids. We investigated a dynamical matrix M=AA^T with non-negative
eigenvalues. The matrix A is an arbitrary real NxN sparse random matrix with n
independent non-zero elements in each row. The average values =0 and
dispersion =V^2 for all non-zero elements. The density of vibrational
states g(w) of the matrix M for N,n >> 1 is given by the Wigner quarter circle
law with radius independent of N. We argue that for n^2 << N this model can be
used to describe the interaction of atoms in amorphous solids. The level
statistics of matrix M is well described by the Wigner surmise and corresponds
to repulsion of eigenfrequencies. The participation ratio for the major part of
vibrational modes in three dimensional system is about 0.2 - 0.3 and
independent of N. Together with term repulsion it indicates clearly to the
delocalization of vibrational excitations. We show that these vibrations spread
in space by means of diffusion. In this respect they are similar to diffusons
introduced by Allen, Feldman, et al., Phil. Mag. B 79, 1715 (1999) in amorphous
silicon. Our results are in a qualitative and sometimes in a quantitative
agreement with molecular dynamic simulations of real and model glasses.Comment: 24 pages, 7 figure
Voronoi-Delaunay analysis of normal modes in a simple model glass
We combine a conventional harmonic analysis of vibrations in a one-atomic
model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the
structure. ``Structure potentials'' (tetragonality, sphericity or perfectness)
are introduced to describe the shape of the local atomic configurations
(Delaunay simplices) as function of the atomic coordinates. Apart from the
highest and lowest frequencies the amplitude weighted ``structure potential''
varies only little with frequency. The movement of atoms in soft modes causes
transitions between different ``perfect'' realizations of local structure. As
for the potential energy a dynamic matrix can be defined for the ``structure
potential''. Its expectation value with respect to the vibrational modes
increases nearly linearly with frequency and shows a clear indication of the
boson peak. The structure eigenvectors of this dynamical matrix are strongly
correlated to the vibrational ones. Four subgroups of modes can be
distinguished
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers
The small-scale dynamo is a process by which turbulent kinetic energy is
converted into magnetic energy, and thus is expected to depend crucially on the
nature of turbulence. In this work, we present a model for the small-scale
dynamo that takes into account the slope of the turbulent velocity spectrum
v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and
the typical velocity on that scale. The time evolution of the fluctuation
component of the magnetic field, i.e., the small-scale field, is described by
the Kazantsev equation. We solve this linear differential equation for its
eigenvalues with the quantum-mechanical WKB-approximation. The validity of this
method is estimated as a function of the magnetic Prandtl number Pm. We
calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit,
using our model of the turbulent velocity correlation function. For Kolmogorov
turbulence (theta=1/3), we find that the critical magnetic Reynolds number is
approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700.
Furthermore, we derive that the growth rate of the small-scale magnetic field
for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the
limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl
number (down to Pm approximately larger than 10), the growth rate of the
small-scale dynamo decreases. The details of this drop depend on the
WKB-approximation, which becomes invalid for a magnetic Prandtl number of about
unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201
Ice XII in its second regime of metastability
We present neutron powder diffraction results which give unambiguous evidence
for the formation of the recently identified new crystalline ice phase[Lobban
et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different
conditions. Ice XII is produced here by compressing hexagonal ice I_h at T =
77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure
in the temperature range 1.5 < T < 135 K. High resolution diffraction is
carried out at T = 1.5 K and ambient pressure on ice XII and accurate
structural properties are obtained from Rietveld refinement. At T = 140 and 160
K additionally ice III/IX is formed. The increasing amount of ice III/IX with
increasing temperature gives an upper limit of T ~ 150 K for the successful
formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review
Letters
Theory of sound attenuation in glasses: The role of thermal vibrations
Sound attenuation and internal friction coefficients are calculated for a
realistic model of amorphous silicon. It is found that, contrary to previous
views, thermal vibrations can induce sound attenuation at ultrasonic and
hypersonic frequencies that is of the same order or even larger than in
crystals. The reason is the internal-strain induced anomalously large
Gr\"uneisen parameters of the low-frequency resonant modes.Comment: 8 pages, 3 figures; to appear in PR
- …