694 research outputs found
Advanced composite applications for sub-micron biologically derived microstructures
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes
Theory of Chiral Order in Random Copolymers
Recent experiments have found that polyisocyanates composed of a mixture of
opposite enantiomers follow a chiral ``majority rule:'' the chiral order of the
copolymer, measured by optical activity, is dominated by whichever enantiomer
is in the majority. We explain this majority rule theoretically by mapping the
random copolymer onto the random-field Ising model. Using this model, we
predict the chiral order as a function of enantiomer concentration, in
quantitative agreement with the experiments, and show how the sharpness of the
majority-rule curve can be controlled.Comment: 13 pages, including 4 postscript figures, uses REVTeX 3.0 and
epsf.st
Concise theory of chiral lipid membranes
A theory of chiral lipid membranes is proposed on the basis of a concise free
energy density which includes the contributions of the bending and the surface
tension of membranes, as well as the chirality and orientational variation of
tilting molecules. This theory is consistent with the previous experiments
[J.M. Schnur \textit{et al.}, Science \textbf{264}, 945 (1994); M.S. Spector
\textit{et al.}, Langmuir \textbf{14}, 3493 (1998); Y. Zhao, \textit{et al.},
Proc. Natl. Acad. Sci. USA \textbf{102}, 7438 (2005)] on self-assembled chiral
lipid membranes of DCPC. A torus with the ratio between its two
generated radii larger than is predicted from the Euler-Lagrange
equations. It is found that tubules with helically modulated tilting state are
not admitted by the Euler-Lagrange equations, and that they are less
energetically favorable than helical ripples in tubules. The pitch angles of
helical ripples are theoretically estimated to be about 0 and
35, which are close to the most frequent values 5 and
28 observed in the experiment [N. Mahajan \textit{et al.}, Langmuir
\textbf{22}, 1973 (2006)]. Additionally, the present theory can explain twisted
ribbons of achiral cationic amphiphiles interacting with chiral tartrate
counterions. The ratio between the width and pitch of twisted ribbons is
predicted to be proportional to the relative concentration difference of left-
and right-handed enantiomers in the low relative concentration difference
region, which is in good agreement with the experiment [R. Oda \textit{et al.},
Nature (London) \textbf{399}, 566 (1999)].Comment: 14 pages, 7 figure
Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes
We present a general theory for the equilibrium structure of cylindrical
tubules and helical ribbons of chiral lipid membranes. This theory is based on
a continuum elastic free energy that permits variations in the direction of
molecular tilt and in the curvature of the membrane. The theory shows that the
formation of tubules and helical ribbons is driven by the chirality of the
membrane. Tubules have a first-order transition from a uniform state to a
helically modulated state, with periodic stripes in the tilt direction and
ripples in the curvature. Helical ribbons can be stable structures, or they can
be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and
epsf.st
Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium
Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past. <br><br> Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging) are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode
Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307
Background
Many cases of cutaneous leishmaniasis (CL) have been recorded in the Jenin District based on their clinical appearance. Here, their parasites have been characterized in depth.
Methods
Leishmanial parasites isolated from 12 human cases of CL from the Jenin District were cultured as promastigotes, whose DNA was extracted. The ITS1 sequence and the 7SL RNA gene were analysed as was the kinetoplast minicircle DNA (kDNA) sequence. Excreted factor (EF) serotyping and multilocus enzyme electrophoresis (MLEE) were also applied.
Results
This extensive characterization identified the strains as Leishmania tropica of two very distinct sub-types that parallel the two sub-groups discerned by multilocus microsatellite typing (MLMT) done previously. A high degree of congruity was displayed among the results generated by the different analytical methods that had examined various cellular components and exposed intra-specific heterogeneity among the 12 strains.
Three of the ten strains subjected to MLEE constituted a new zymodeme, zymodeme MON-307, and seven belonged to the known zymodeme MON-137. Ten of the 15 enzymes in the profile of zymodeme MON-307 displayed different electrophoretic mobilities compared with the enzyme profile of the zymodeme MON-137. The closest profile to that of zymodeme MON-307 was that of the zymodeme MON-76 known from Syria.
Strains of the zymodeme MON-307 were EF sub-serotype A2 and those of the zymodeme MON-137 were either A9 or A9B4. The sub-serotype B4 component appears, so far, to be unique to some strains of L. tropica of zymodeme MON-137. Strains of the zymodeme MON-137 displayed a distinctive fragment of 417 bp that was absent in those of zymodeme MON-307 when their kDNA was digested with the endonuclease RsaI. kDNA-RFLP after digestion with the endonuclease MboI facilitated a further level of differentiation that partially coincided with the geographical distribution of the human cases from which the strains came.
Conclusions
The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector
- …