4 research outputs found
Effects of differential mobility on biased diffusion of two species
Using simulations and a simple mean-field theory, we investigate jamming
transitions in a two-species lattice gas under non-equilibrium steady-state
conditions. The two types of particles diffuse with different mobilities on a
square lattice, subject to an excluded volume constraint and biased in opposite
directions. Varying filling fraction, differential mobility, and drive, we map
out the phase diagram, identifying first order and continuous transitions
between a free-flowing disordered and a spatially inhomogeneous jammed phase.
Ordered structures are observed to drift, with a characteristic velocity, in
the direction of the more mobile species.Comment: 15 pages, 4 figure
Structure Factors and Their Distributions in Driven Two-Species Models
We study spatial correlations and structure factors in a three-state
stochastic lattice gas, consisting of holes and two oppositely ``charged''
species of particles, subject to an ``electric'' field at zero total charge.
The dynamics consists of two nearest-neighbor exchange processes, occuring on
different times scales, namely, particle-hole and particle-particle exchanges.
Using both, Langevin equations and Monte Carlo simulations, we study the
steady-state structure factors and correlation functions in the disordered
phase, where density profiles are homogeneous. In contrast to equilibrium
systems, the average structure factors here show a discontinuity singularity at
the origin. The associated spatial correlation functions exhibit intricate
crossovers between exponential decays and power laws of different kinds. The
full probability distributions of the structure factors are universal
asymmetric exponential distributions.Comment: RevTex, 18 pages, 4 postscript figures included, mistaken half-empty
page correcte