8 research outputs found

    Modulsystem zum Aufbau von Bioreaktoren

    No full text
    The description relates to a module system for the construction of bioreactors which have graduated diameters within a specific range and whose height-diameter ratio can have values of stirred reactors or also values of column-shaped reactors. The invention is characterized by the provision of a base for all diameters, said base permitting the connection of stir drives as well as equipment for the dispersion and/or distribution of gas and/or liquids, and a contour for the fluid-tight connection to a corresponding flange on a reactor vessel component having one of the graduated diameters, whereby the reactor vessel components also has a flange at its other end permitting the connection of another reactor vessel component or it acts as a termination element

    Growth of HgI2 Single Crystalsin Spacelab I

    No full text

    Differential Effects of Interleukin-7 and Interleukin-15 on NK Cell Anti-Human Immunodeficiency Virus Activity

    No full text
    The ability of interleukin-7 (IL-7) and IL-15 to expand and/or augment effector cell functions may be of therapeutic benefit to human immunodeficiency virus (HIV)-infected patients. The functional effects of these cytokines on innate HIV-specific immunity and their impact on cells harboring HIV are unknown. We demonstrate that both IL-7 and IL-15 augment natural killer (NK) function by using cells (CD3(−) CD16(+) CD56(+)) from both HIV-positive and -negative donors. Whereas IL-7 enhances NK function through upregulation of Fas ligand, the effect of IL-15 is mediated through upregulation of tumor necrosis factor-related apoptosis-inducing ligand. The difference in these effector mechanisms is reflected by the ability of IL-15-treated but not IL-7-treated NK cells to reduce the burden of replication-competent HIV in autologous peripheral blood mononuclear cells (PBMC) (infectious units per million for control NK cells, 6.79; for IL-7-treated NK cells, 236.17; for IL-15-treated cells, 1.01; P = 0.01 versus control). In addition, the treatment of PBMC with IL-15-treated but not IL-7-treated NK cells causes undetectable HIV p24 (five of five cases), HIV RNA (five of five cases), or HIV DNA (three of five cases). These results support the concept of adjuvant immunotherapy of HIV infection with either IL-7 or IL-15 but suggest that the NK-mediated antiviral effect of IL-15 may be superior

    HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    No full text
    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells, and they suggest a novel mechanism of innate control of HIV-1 infection
    corecore