3,578 research outputs found

    Methodology in our madness

    Get PDF
    It is a great pleasure to present the first issue of a new journal. However, the more sceptical reader might wonder whether yet another new journal is really needed. In this editorial we attempt to justify our self-indulgence and to set out our vision for Survey Research Methods

    A century of enzyme kinetics. Should we believe in the Km and vmax estimates?

    Get PDF
    The application of the quasi-steady-state approximation (QSSA) in biochemical kinetics allows the reduction of a complex biochemical system with an initial fast transient into a simpler system. The simplified system yields insights into the behavior of the biochemical reaction, and analytical approximations can be obtained to determine its kinetic parameters. However, this process can lead to inaccuracies due to the inappropriate application of the QSSA. Here we present a number of approximate solutions and determine in which regions of the initial enzyme and substrate concentration parameter space they are valid. In particular, this illustrates that experimentalists must be careful to use the correct approximation appropriate to the initial conditions within the parameter space

    Bulletin of Mathematical Biology - facts, figures and comparisons

    Get PDF
    The Society for Mathematical Biology (SMB) owns the Bulletin of Mathematical Biology (BMB). This is an international journal devoted to the interface of mathematics and biology. At the 2003 SMB annual meeting in Dundee the Society asked the editor of the BMB to produce an analysis of impact factor, subject matter of papers, submission rates etc. Other members of the society were interested in the handling times of articles and wanted comparisons with other (appropriate) journals. In this article we present a brief history of the journal and report on how the journal impact factor has grown substantially in the last few years. We also present an analysis of subject areas of published papers over the past two years. We finally present data on times from receipt of paper to acceptance, acceptance to print (and to online publication) and compare these data with some other journals

    Multiscale modeling in biology

    Get PDF
    The 1966 science-fction film Fantastic Voyage captured the public imagination with a clever idea: what fantastic things might we see and do if we could minaturize ourselves and travel through the bloodstream as corpuscles do? (This being Hollywood, the answer was that we'd save a fellow scientist from evildoers.

    Isospin singlet (pn) pairing and quartetting contribution to the binding energy of nuclei

    Get PDF
    Isospin singlet (pn) pairing as well as quartetting in nuclei is expected to arise near the symmetry line N=ZN=Z. Empirical values can be deduced from the nuclear binding energies applying special filters. Within the local density approximation, theoretical estimates for finite nuclei are obtained from results for the condensation energy of asymmetric nuclear matter. It is shown that the isospin singlet condensation energy drops down abruptly for |N-Z|~4 for medium nuclei in the region A=40. Furthermore, alpha-like quartetting and the influence of excitations are discussed.Comment: 19 pages, 19 figures, submitted to PR

    A mathematical investigation of a clock and wavefront model for somitogenesis

    Get PDF
    Abstract Somites are transient blocks of cells that form sequentially along the antero-posterior axis of vertebrate embryos. They give rise to the vertebrae, ribs and other associated features of the trunk. In this work we develop and analyse a mathematical formulation of a version of the Clock and Wavefront model for somite formation, where the clock controls when the boundaries of the somites form and the wavefront determines where they form. Our analysis indicates that this interaction between a segmentation clock and a wavefront can explain the periodic pattern of somites observed in normal embryos. We can also show that a simplification of the model provides a mechanism for predicting the anomalies resulting from perturbation of the wavefront

    Formation of vertebral precursors: Past models and future predictions

    Get PDF
    Disruption of normal vertebral development results from abnormal formation and segmentation of the vertebral precursors, called somites. Somitogenesis, the sequential formation of a periodic pattern along the antero-posterior axis of vertebrate embryos, is one of the most obvious examples of the segmental patterning processes that take place during embryogenesis and also one of the major unresolved events in developmental biology. We review the most popular models of somite formation: Cooke and Zeeman's clock and wavefront model, Meinhardt's reaction-diffusion model and the cell cycle model of Stern and co-workers, and discuss the consistency of each in the light of recent experimental findings concerning FGF-8 signalling in the presomitic mesoderm (PSM). We present an extension of the cell cycle model to take account of this new experimental evidence, which shows the existence of a determination front whose position in the PSM is controlled by FGF-8 signalling, and which controls the ability of cells to become competent to segment. We conclude that it is, at this stage, perhaps erroneous to favour one of these models over the others

    Formation of vertebral precursors: Past models and future predictions

    Get PDF
    Disruption of normal vertebral development results from abnormal formation and segmentation of the vertebral precursors, called somites. Somitogenesis, the sequential formation of a periodic pattern along the antero-posterior axis of vertebrate embryos, is one of the most obvious examples of the segmental patterning processes that take place during embryogenesis and also one of the major unresolved events in developmental biology. We review the most popular models of somite formation: Cooke and Zeeman's clock and wavefront model, Meinhardt's reaction-diffusion model and the cell cycle model of Stern and co-workers, and discuss the consistency of each in the light of recent experimental findings concerning FGF-8 signalling in the presomitic mesoderm (PSM). We present an extension of the cell cycle model to take account of this new experimental evidence, which shows the existence of a determination front whose position in the PSM is controlled by FGF-8 signalling, and which controls the ability of cells to become competent to segment. We conclude that it is, at this stage, perhaps erroneous to favour one of these models over the others

    Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    Get PDF
    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes
    • …
    corecore