1,689 research outputs found

    Invariant Solution underlying Oblique Stripe Patterns in Plane Couette Flow

    Full text link
    When subcritical shear flows transition to turbulence, laminar and turbulent flow often coexists in space, giving rise to turbulent-laminar patterns. Most prominent are regular stripe patterns with large-scale periodicity and oblique orientation. Oblique stripes are a robust phenomenon, observed in experiments and flow simulations, yet their origin remains unclear. We demonstrate the existence of an invariant equilibrium solution of the fully nonlinear 3D Navier-Stokes equations that resembles the oblique pattern of turbulent-laminar stripes in plane Couette flow. We uncover the origin of the stripe equilibrium and show how it emerges from the well-studied Nagata equilibrium via two successive symmetry-breaking bifurcations

    Studying edge geometry in transiently turbulent shear flows

    Full text link
    In linearly stable shear flows at moderate Re, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge of chaos, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories we provide evidence, that the edge of chaos separates state space not globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.Comment: 11 pages, 6 figure

    Snakes and ladders: localized solutions of plane Couette flow

    Full text link
    We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.Comment: submitted to Physics Review Letter

    Edge states control droplet break-up in sub-critical extensional flows

    Get PDF
    A fluid droplet suspended in an extensional flow of moderate intensity may break into pieces, depending on the amplitude of the initial droplet deformation. In subcritical uniaxial extensional flow the non-breaking base state is linearly stable, implying that only a finite amplitude perturbation can trigger break-up. Consequently, the stable base solution is surrounded by its finite basin of attraction. The basin boundary, which separates initial droplet shapes returning to the non-breaking base state from those becoming unstable and breaking up, is characterized using edge tracking techniques. We numerically construct the edge state, a dynamically unstable equilibrium whose stable manifold forms the basin boundary. The edge state equilibrium controls if the droplet breaks and selects a unique path towards break-up. This path physically corresponds to the well-known end-pinching mechanism. Our results thereby rationalize the dynamics observed experimentally [Stone & Leal, J. Fluid Mech. 206, 223 (1989)

    Identifying invariant solutions of wall-bounded three-dimensional shear flows using robust adjoint-based variational techniques

    Full text link
    Invariant solutions of the Navier-Stokes equations play an important role in the spatiotemporally chaotic dynamics of turbulent shear flows. Despite the significance of these solutions, their identification remains a computational challenge, rendering many solutions inaccessible and thus hindering progress towards a dynamical description of turbulence in terms of invariant solutions. We compute equilibria of three-dimensional wall-bounded shear flows using an adjoint-based matrix-free variational approach. To address the challenge of computing pressure in the presence of solid walls, we develop a formulation that circumvents the explicit construction of pressure and instead employs the influence matrix method. Together with a data-driven convergence acceleration technique based on dynamic mode decomposition, this yields a practically feasible alternative to state-of-the-art Newton methods for converging equilibrium solutions. We successfully converge multiple equilibria of plane Couette flow starting from inaccurate guesses extracted from a turbulent time series. The variational method significantly outperforms the standard Newton-hookstep method, demonstrating its superior robustness and suggesting a considerably larger convergence radius

    Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces

    Full text link
    Viral transmission pathways have profound implications for public safety; it is thus imperative to establish a complete understanding of viable infectious avenues. Mounting evidence suggests SARS-CoV-2 can be transmitted via the air; however, this has not yet been demonstrated. Here we quantitatively analyze virion accumulation by accounting for aerosolized virion emission and destabilization. Reported superspreading events analyzed within this framework point towards aerosol mediated transmission of SARS-CoV-2. Virion exposure calculated for these events is found to trace out a single value, suggesting a universal minimum infective dose (MID) via aerosol that is comparable to the MIDs measured for other respiratory viruses; thus, the consistent infectious exposure levels and their commensurability to known aerosol-MIDs establishes the plausibility of aerosol transmission of SARS-CoV-2. Using filtration at a rate exceeding the destabilization rate of aerosolized SARS-CoV-2 can reduce exposure below this infective dose.Comment: 6 pages, 4 figure
    • …
    corecore