1,083 research outputs found

    Towards Complete Sets of Farnesylated and Geranylgeranylated Proteins

    Get PDF
    Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein–protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase) and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins—for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain–containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site

    MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins

    Get PDF
    We evaluated the evolutionary conservation of glycine myristoylation within eukaryotic sequences. Our large-scale cross-genome analyses, available as MYRbase, show that the functional spectrum of myristoylated proteins is currently largely underestimated. We give experimental evidence for in vitro myristoylation of selected predictions. Furthermore, we classify five membrane-attachment factors that occur most frequently in combination with, or even replacing, myristoyl anchors, as some protein family examples show

    Tachyon search speeds up retrieval of similar sequences by several orders of magnitude

    Get PDF
    Summary: The usage of current sequence search tools becomes increasingly slower as databases of protein sequences continue to grow exponentially. Tachyon, a new algorithm that identifies closely related protein sequences ~200 times faster than standard BLAST, circumvents this limitation with a reduced database and oligopeptide matching heuristic

    Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region

    Full text link
    Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae

    Functional Interaction between Type III-Secreted Protein IncA of Chlamydophila psittaci and Human G3BP1

    Get PDF
    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation

    Association of early life stress and cognitive performance in patients with schizophrenia and healthy controls

    Get PDF
    As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = −0.305, p < 0.001) than in patients (r = −0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = −0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level

    Synergetic Effects of Granulocyte-Colony Stimulating Factor and Cognitive Training on Spatial Learning and Survival of Newborn Hippocampal Neurons

    Get PDF
    Granulocyte-Colony Stimulating Factor (G-CSF) is an endogenous hematopoietic growth factor known for its role in the proliferation and differentiation of cells of the myeloic lineage. Only recently its significance in the CNS has been uncovered. G-CSF attenuates apoptosis and controls proliferation and differentiation of neural stem cells. G-CSF activates upstream kinases of the cAMP response element binding protein (CREB), which is thought to facilitate the survival of neuronal precursors and to recruit new neurons into the dentate gyrus. CREB is also essential for spatial long-term memory formation. To assess the role and the potential of this factor on learning and memory-formation we systemically administered G-CSF in rats engaged in spatial learning in an eight-arm radial maze. G-CSF significantly improved spatial learning and increased in combination with cognitive training the survival of newborn neurons in the hippocampus as measured by bromodeoxyuridine and doublecortin immunohistochemistry. Additionally, G-CSF improved re-acquisition of spatial information after 26 days. These findings support the hypothesis that G-CSF can enhance learning and memory formation. Due to its easy applicability and its history as a well-tolerated hematological drug, the use of G-CSF opens up new neurological treatment opportunities in conditions where learning and memory-formation deficits occur

    Recommendations, guidelines, and best practice for the use of human induced pluripotent stem cells for neuropharmacological studies of neuropsychiatric disorders

    Get PDF
    The number of individuals suffering from neuropsychiatric disorders (NPDs) has increased worldwide, with 3 million disability-adjusted life-years calculated in 2019. Though research using various approaches including genetics, imaging, clinical and animal models has advanced our knowledge regarding NPDs, we still lack basic knowledge regarding the underlying pathophysiological mechanisms. Moreover, there is an urgent need for highly effective therapeutics for NPDs. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells enabled scientists to create brain cells in a patient-specific manner. However, there are challenges to the use of hiPSCs that need to be addressed. In the current paper, consideration of best practices for neuropharmacological and neuropsychiatric research using hiPSCs will be discussed. Specifically, we provide recommendations for best practice in patient recruitment, including collecting demographic, clinical, medical (before and after treatment and response), diagnostic (including scales) and genetic data from the donors. We highlight considerations regarding donor genetics and sex, in addition to discussing biological and technical replicates. Furthermore, we present our views on selecting control groups/lines, experimental designs, and considerations for conducting neuropharmacological studies using hiPSC-based models in the context of NPDs. In doing so, we explore key issues in the field concerning reproducibility, statistical analysis, and how to translate in vitro studies into clinically relevant observations. The aim of this article is to provide a key resource for hiPSC researchers to perform robust and reproducible neuropharmacological studies, with the ultimate aim of improving identification and clinical translation of novel therapeutic drugs for NPDs

    Type 1 Autoimmune Pancreatitis in Europe:Clinical Profile and Response to Treatment

    Get PDF
    Background &amp; Aims: Autoimmune pancreatitis (AIP) is an immune-mediated disease of the pancreas with distinct pathophysiology and manifestations. Our aims were to characterize type 1 AIP in a large pan-European cohort and study the effectiveness of current treatment regimens. Methods: We retrospectively analyzed adults diagnosed since 2005 with type 1 or not-otherwise-specified AIP in 42 European university hospitals. Type 1 AIP was uniformly diagnosed using specific diagnostic criteria. Patients with type 2 AIP and those who had undergone pancreatic surgery were excluded. The primary end point was complete remission, defined as the absence of clinical symptoms and resolution of the index radiologic pancreatic abnormalities attributed to AIP. Results: We included 735 individuals with AIP (69% male; median age, 57 years; 85% White). Steroid treatment was started in 634 patients, of whom 9 (1%) were lost to follow-up. The remaining 625 had a 79% (496/625) complete, 18% (111/625) partial, and 97% (607/625) cumulative remission rate, whereas 3% (18/625) did not achieve remission. No treatment was given in 95 patients, who had a 61% complete (58/95), 19% partial (18/95), and 80% cumulative (76/95) spontaneous remission rate. Higher (≥0.4 mg/kg/day) corticosteroid doses were no more effective than lower (&lt;0.4 mg/kg/day) doses (odds ratio, 0.428; 95% confidence interval, 0.054–3.387) and neither was a starting dose duration &gt;2 weeks (odds ratio, 0.908; 95% confidence interval, 0.818–1.009). Elevated IgG4 levels were independently associated with a decreased chance of complete remission (odds ratio, 0.639; 95% confidence interval, 0.427–0.955). Relapse occurred in 30% of patients. Relapses within 6 months of remission induction were independent of the steroid-tapering duration, induction treatment duration, and total cumulative dose. Conclusions: Patients with type 1 AIP and elevated IgG4 level may need closer monitoring. For remission induction, a starting dose of 0.4 mg/kg/day for 2 weeks followed by a short taper period seems effective. This study provides no evidence to support more aggressive regimens.</p
    corecore