495 research outputs found

    Probabilistic segmentation propagation from uncertainty in registration

    Get PDF
    In this paper we propose a novel approach for incorporating measures of spatial uncertainty which are derived from non-rigid registration, into propagated segmentation labels. In current approaches to segmentation via label propagation, a point-estimate of the registration parameters is used. However, this is limited by the registration accuracy achieved. In this work, we derive local measurements of the uncertainty of a non-rigid mapping from a probabilistic registration framework. This allows us to consider the set of probable locations for a segmentation label to hold. We demonstrate the use of this method on the propagation of accurately delineated cortical labels in inter-subject brain MRI using the NIREP dataset. We find that accounting for the spatial uncertainty of the mapping increases the sensitivity of correctly classifying anatomical labels

    Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal data

    Get PDF
    The main goal of this work was to assess the accuracy of several well-known methods which provide global (BSI and SIENA) or local (Jacobian integration) estimates of longitudinal atrophy in brain structures using Magnetic Resonance images. For that purpose, we have generated realistic simulated images which mimic the patterns of change obtained from a cohort of 19 real controls and 27 probable Alzheimer's disease patients. SIENA and BSI results correlate very well with gold standard data (BSI mean absolute error < 0.29%; SIENA < 0.44%). Jacobian integration was guided by both fluid and FFD-based registration techniques and resulting deformation fields and associated Jacobians were compared, region by region, with gold standard ones. The FFD registration technique provided more satisfactory results than the fluid one. Mean absolute error differences between volume changes given by the FFD-based technique and the gold standard were: sulcal CSF < 2.49%; lateral ventricles < 2.25%; brain < 0.36%; hippocampi < 1.42%

    Impact of image-based motion correction on dopamine D3/D2 receptor occupancy-comparison of groupwise and frame-by-frame registration approaches

    Get PDF
    © 2015, Jiao et al.Background: Image registration algorithms are frequently used to align the reconstructed brain PET frames to remove subject head motion. However, in occupancy studies, this is a challenging task where competitive binding of a drug can further reduce the available signal for registration. The purpose of this study is to evaluate two kinds of algorithms—a conventional frame-by-frame (FBF) registration and a recently introduced groupwise image registration (GIR), for motion correction of a dopamine D3/D2 receptor occupancy study. Methods: The FBF method co-registers all the PET frames to a common reference based on normalised mutual information as the spatial similarity. The GIR method incorporates a pharmacokinetic model and conducts motion correction by maximising a likelihood function iteratively on tracer kinetics and subject motion. Data from eight healthy volunteers scanned with [11C]-(+)-PHNO pre- and post-administration of a range of doses of the D3 antagonist GSK618334 were used to compare the motion correction performance. Results: The groupwise registration achieved improved motion correction results, both by visual inspection of the dynamic PET data and by the reduction of the variability in the outcome measures, and required no additional steps to exclude unsuccessfully realigned PET data for occupancy modelling as compared to frame-by-frame registration. Furthermore, for the groupwise method, the resultant binding potential estimates had reduced variation and bias for individual scans and improved half maximal effective concentration (EC50) estimates were obtained for the study as a whole. Conclusions: These results indicate that the groupwise registration approach can provide improved motion correction of dynamic brain PET data as compared to frame-by-frame registration approaches for receptor occupancy studies

    A landmark-free morphometrics pipeline for high-resolution phenotyping: application to a mouse model of Down syndrome

    Get PDF
    Characterising phenotypes often requires quantification of anatomical shape. Quantitative shape comparison (morphometrics) traditionally uses manually located landmarks and is limited by landmark number and operator accuracy. Here, we apply a landmark-free method to characterise the craniofacial skeletal phenotype of the Dp1Tyb mouse model of Down syndrome and a population of the Diversity Outbred (DO) mouse model, comparing it with a landmark-based approach. We identified cranial dysmorphologies in Dp1Tyb mice, especially smaller size and brachycephaly (front-back shortening), homologous to the human phenotype. Shape variation in the DO mice was partly attributable to allometry (size-dependent shape variation) and sexual dimorphism. The landmark-free method performed as well as, or better than, the landmark-based method but was less labour-intensive, required less user training and, uniquely, enabled fine mapping of local differences as planar expansion or shrinkage. Its higher resolution pinpointed reductions in interior mid-snout structures and occipital bones in both the models that were not otherwise apparent. We propose that this landmark-free pipeline could make morphometrics widely accessible beyond its traditional niches in zoology and palaeontology, especially in characterising developmental mutant phenotypes

    A method for dynamic subtraction MR imaging of the liver

    Get PDF
    BACKGROUND: Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. METHODS: Nineteen consecutive patients (median age 45 years; range 37–67) were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm) acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a) rigid 3D translation using maximization of normalized mutual information (NMI), and (b) fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. RESULTS: The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test) and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p < 0.001, paired t-test) after non-rigid realignment. The overall average NMI increase was 31%. CONCLUSION: This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure
    • …
    corecore