231 research outputs found

    Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks

    Full text link
    Medical image registration aims at identifying the spatial deformation between images of the same anatomical region and is fundamental to image-based diagnostics and therapy. To date, the majority of the deep learning-based registration methods employ regularizers that enforce global spatial smoothness, e.g., the diffusion regularizer. However, such regularizers are not tailored to the data and might not be capable of reflecting the complex underlying deformation. In contrast, physics-inspired regularizers promote physically plausible deformations. One such regularizer is the linear elastic regularizer which models the deformation of elastic material. These regularizers are driven by parameters that define the material's physical properties. For biological tissue, a wide range of estimations of such parameters can be found in the literature and it remains an open challenge to identify suitable parameter values for successful registration. To overcome this problem and to incorporate physical properties into learning-based registration, we propose to use a hypernetwork that learns the effect of the physical parameters of a physics-inspired regularizer on the resulting spatial deformation field. In particular, we adapt the HyperMorph framework to learn the effect of the two elasticity parameters of the linear elastic regularizer. Our approach enables the efficient discovery of suitable, data-specific physical parameters at test time.Comment: Manuscript accepted at SPIE Medical Imaging 202

    Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains

    Full text link
    Deep generative models have emerged as influential instruments for data generation and manipulation. Enhancing the controllability of these models by selectively modifying data attributes has been a recent focus. Variational Autoencoders (VAEs) have shown promise in capturing hidden attributes but often produce blurry reconstructions. Controlling these attributes through different imaging domains is difficult in medical imaging. Recently, Soft Introspective VAE leverage the benefits of both VAEs and Generative Adversarial Networks (GANs), which have demonstrated impressive image synthesis capabilities, by incorporating an adversarial loss into VAE training. In this work, we propose the Attributed Soft Introspective VAE (Attri-SIVAE) by incorporating an attribute regularized loss, into the Soft-Intro VAE framework. We evaluate experimentally the proposed method on cardiac MRI data from different domains, such as various scanner vendors and acquisition centers. The proposed method achieves similar performance in terms of reconstruction and regularization compared to the state-of-the-art Attributed regularized VAE but additionally also succeeds in keeping the same regularization level when tested on a different dataset, unlike the compared method

    AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-Center LGE MRIs

    Full text link
    Left atrial (LA) segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is a crucial step needed for planning the treatment of atrial fibrillation. However, automatic LA segmentation from LGE MRI is still challenging, due to the poor image quality, high variability in LA shapes, and unclear LA boundary. Though deep learning-based methods can provide promising LA segmentation results, they often generalize poorly to unseen domains, such as data from different scanners and/or sites. In this work, we collect 210 LGE MRIs from different centers with different levels of image quality. To evaluate the domain generalization ability of models on the LA segmentation task, we employ four commonly used semantic segmentation networks for the LA segmentation from multi-center LGE MRIs. Besides, we investigate three domain generalization strategies, i.e., histogram matching, mutual information based disentangled representation, and random style transfer, where a simple histogram matching is proved to be most effective.Comment: 10 pages, 4 figures, MICCAI202

    Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation Studies: A Review

    Full text link
    Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars. The position and extent of scars provide important information of the pathophysiology and progression of atrial fibrillation (AF). Hence, LA scar segmentation and quantification from LGE MRI can be useful in computer-assisted diagnosis and treatment stratification of AF patients. Since manual delineation can be time-consuming and subject to intra- and inter-expert variability, automating this computing is highly desired, which nevertheless is still challenging and under-researched. This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar and ablation gap segmentation and quantification from LGE MRI, and the related literature for AF studies. Specifically, we first summarize AF-related imaging techniques, particularly LGE MRI. Then, we review the methodologies of the four computing tasks in detail, and summarize the validation strategies applied in each task. Finally, the possible future developments are outlined, with a brief survey on the potential clinical applications of the aforementioned methods. The review shows that the research into this topic is still in early stages. Although several methods have been proposed, especially for LA segmentation, there is still large scope for further algorithmic developments due to performance issues related to the high variability of enhancement appearance and differences in image acquisition.Comment: 23 page

    Diffusion Models with Implicit Guidance for Medical Anomaly Detection

    Full text link
    Diffusion models have advanced unsupervised anomaly detection by improving the transformation of pathological images into pseudo-healthy equivalents. Nonetheless, standard approaches may compromise critical information during pathology removal, leading to restorations that do not align with unaffected regions in the original scans. Such discrepancies can inadvertently increase false positive rates and reduce specificity, complicating radiological evaluations. This paper introduces Temporal Harmonization for Optimal Restoration (THOR), which refines the de-noising process by integrating implicit guidance through temporal anomaly maps. THOR aims to preserve the integrity of healthy tissue in areas unaffected by pathology. Comparative evaluations show that THOR surpasses existing diffusion-based methods in detecting and segmenting anomalies in brain MRIs and wrist X-rays. Code: https://github.com/ci-ber/THOR_DDPM
    • …
    corecore