329 research outputs found

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed

    An unconditional basic income in the family context : labor supply and distributional effects

    Full text link
    In this paper we estimate the effects of an unconditional basic income on labor supply and income distribution with a special focus on the incentives to work in the family context. An unconditional basic income guarantees every citizen a minimum ncome without any means-testing. We simulate a proposed basic income reform with a detailed microsimulation model, estimate labor supply reactions with a structural labor supply model and perform distributional analysis using micro data from the German Socio-Economic Panel. As the originally proposed basic income concept yields a very high deficit, we also analyze two budget neutral alternatives. Comparing labor supply and distributional results of the budget neutral alternatives, the well-known equity-efficiency trade-off is unveiled. In the family context our analyzes suggest that the unconditional character of the basic income causes increasing family incomes, but also serious disincentives to work for secondary earners

    Sparse annotation strategies for segmentation of short axis cardiac MRI

    Full text link
    Short axis cardiac MRI segmentation is a well-researched topic, with excellent results achieved by state-of-the-art models in a supervised setting. However, annotating MRI volumes is time-consuming and expensive. Many different approaches (e.g. transfer learning, data augmentation, few-shot learning, etc.) have emerged in an effort to use fewer annotated data and still achieve similar performance as a fully supervised model. Nevertheless, to the best of our knowledge, none of these works focus on which slices of MRI volumes are most important to annotate for yielding the best segmentation results. In this paper, we investigate the effects of training with sparse volumes, i.e. reducing the number of cases annotated, and sparse annotations, i.e. reducing the number of slices annotated per case. We evaluate the segmentation performance using the state-of-the-art nnU-Net model on two public datasets to identify which slices are the most important to annotate. We have shown that training on a significantly reduced dataset (48 annotated volumes) can give a Dice score greater than 0.85 and results comparable to using the full dataset (160 and 240 volumes for each dataset respectively). In general, training on more slice annotations provides more valuable information compared to training on more volumes. Further, annotating slices from the middle of volumes yields the most beneficial results in terms of segmentation performance, and the apical region the worst. When evaluating the trade-off between annotating volumes against slices, annotating as many slices as possible instead of annotating more volumes is a better strategy

    RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation

    Get PDF
    The symbiosis between legumes and rhizobia results in the development of a new plant organ, the nodule. A role for polar auxin transport in nodule development in Medicago truncatula has been demonstrated using molecular genetic tools. The expression of a DR5::GUS auxin-responsive promoter in uninoculated M. truncatula roots mirrored that reported in Arabidopsis, and expression of the construct in nodulating roots confirmed results reported in white clover. The localization of a root-specific PIN protein (MtPIN2) in normal roots, developing lateral roots and nodules provided the first evidence that a PIN protein is expressed in nodules. Reduced levels of MtPIN2, MtPIN3, and MtPIN4 mRNAs via RNA interference demonstrated that plants with reduced expression of various MtPINs display a reduced number of nodules. The reported results show that in M. truncatula, PIN proteins play an important role in nodule development, and that nodules and lateral roots share some early auxin responses in common, but they rapidly differentiate with respect to auxin and MtPIN2 protein distribution

    Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains

    Full text link
    Deep generative models have emerged as influential instruments for data generation and manipulation. Enhancing the controllability of these models by selectively modifying data attributes has been a recent focus. Variational Autoencoders (VAEs) have shown promise in capturing hidden attributes but often produce blurry reconstructions. Controlling these attributes through different imaging domains is difficult in medical imaging. Recently, Soft Introspective VAE leverage the benefits of both VAEs and Generative Adversarial Networks (GANs), which have demonstrated impressive image synthesis capabilities, by incorporating an adversarial loss into VAE training. In this work, we propose the Attributed Soft Introspective VAE (Attri-SIVAE) by incorporating an attribute regularized loss, into the Soft-Intro VAE framework. We evaluate experimentally the proposed method on cardiac MRI data from different domains, such as various scanner vendors and acquisition centers. The proposed method achieves similar performance in terms of reconstruction and regularization compared to the state-of-the-art Attributed regularized VAE but additionally also succeeds in keeping the same regularization level when tested on a different dataset, unlike the compared method
    corecore