6,351 research outputs found
Ising Universality in Three Dimensions: A Monte Carlo Study
We investigate three Ising models on the simple cubic lattice by means of
Monte Carlo methods and finite-size scaling. These models are the spin-1/2
Ising model with nearest-neighbor interactions, a spin-1/2 model with
nearest-neighbor and third-neighbor interactions, and a spin-1 model with
nearest-neighbor interactions. The results are in accurate agreement with the
hypothesis of universality. Analysis of the finite-size scaling behavior
reveals corrections beyond those caused by the leading irrelevant scaling
field. We find that the correction-to-scaling amplitudes are strongly dependent
on the introduction of further-neighbor interactions or a third spin state. In
a spin-1 Ising model, these corrections appear to be very small. This is very
helpful for the determination of the universal constants of the Ising model.
The renormalization exponents of the Ising model are determined as y_t = 1.587
(2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q =
^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry.
The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546
(10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal
of Physics A
A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism
Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, synthesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high-fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resistance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity
Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV
We report the STAR measurement of Phi meson production in Au+Au and p+p
collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi
spectra and yields are obtained at mid-rapidity for five centrality bins in
Au+Au collisions and for non-singly-diffractive p+p collisions. It is found
that the Phi transverse momentum distributions from Au+Au collisions are better
fitted with a single-exponential while the p+p spectrum is better described by
a double-exponential distribution. The measured nuclear modification factors
indicate that Phi production in central Au+Au collisions is suppressed relative
to peripheral collisions when scaled by the number of binary collisions. The
systematics of versus centrality and the constant Phi/K- ratio versus beam
species, centrality, and collision energy rule out kaon coalescence as the
dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
Azimuthal anisotropy and correlations at large transverse momenta in and Au+Au collisions at = 200 GeV
Results on high transverse momentum charged particle emission with respect to
the reaction plane are presented for Au+Au collisions at =
200 GeV. Two- and four-particle correlations results are presented as well as a
comparison of azimuthal correlations in Au+Au collisions to those in at
the same energy. Elliptic anisotropy, , is found to reach its maximum at
GeV/c, then decrease slowly and remain significant up to
-- 10 GeV/c. Stronger suppression is found in the back-to-back
high- particle correlations for particles emitted out-of-plane compared to
those emitted in-plane. The centrality dependence of at intermediate
is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies
Resonance yields and spectra from elementary p+p and Au+Au collisions at
200 GeV from the STAR experiment at RHIC are presented
and discussed in terms of chemical and thermal freeze-out conditions. Thermal
models do not adequately describe the yields of the resonance production in
central Au+Au collisions. The approach to include elastic hadronic interactions
between chemical freeze-out and thermal freeze-out suggests a time of 5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland,
California, to be published in Journal of Physics G: Nuclear and Particle
Physic
- …