650 research outputs found

    Landscape of fear visible from space

    Get PDF
    By linking ecological theory with freely-available Google Earth satellite imagery, landscape-scale footprints of behavioural interactions between predators and prey can be observed remotely. A Google Earth image survey of the lagoon habitat at Heron Island within Australia's Great Barrier Reef revealed distinct halo patterns within algal beds surrounding patch reefs. Ground truth surveys confirmed that, as predicted, algal canopy height increases with distance from reef edges. A grazing assay subsequently demonstrated that herbivore grazing was responsible for this pattern. In conjunction with recent behavioural ecology studies, these findings demonstrate that herbivores' collective antipredator behavioural patterns can shape vegetation distributions on a scale clearly visible from space. By using sequential Google Earth images of specific locations over time, this technique could potentially allow rapid, inexpensive remote monitoring of cascading, indirect effects of predator removals (e.g., fishing; hunting) and/or recovery and reintroductions (e.g., marine or terrestrial reserves) nearly anywhere on earth

    Animating the Carbon Cycle

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Ecosystems. Copyright © 2013 Springer Science+Business Media New York. The final publication is available at Springer via http://dx.doi.org/10.1007/s10021-013-9715-7Understanding the biogeochemical processes regulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully “animating” the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quantification of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mechanisms by which animals may affect carbon exchanges and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more traditional carbon storage and exchange rate estimates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create opportunity for management and policy to identify and implement new options for mitigating CO2 release at regional scales.US National Science FoundationNERCBBSRCNippon Foundatio

    Estimation of parameters in a structured SIR model

    Get PDF
    [EN] In this paper, an age-structured epidemiological process is considered. The disease model is based on a SIR model with unknown parameters. We addressed two important issues to analyzing the model and its parameters. One issue is concerned with the theoretical existence of unique solution, the identifiability problem. The second issue is how to estimate the parameters in the model. We propose an iterative algorithm to study the identifiability of the system and a method to estimate the parameters which are identifiable. A least squares approach based on a finite set of observations helps us to estimate the initial values of the parameters. Finally, we test the proposed algorithms.The authors would like to thank the referees and the editor for their comments and useful suggestions for improvement of the manuscript. This work has been partially supported by Spanish Grant MTM2013-43678-P.Cantó Colomina, B.; Coll, C.; Sánchez, E. (2017). Estimation of parameters in a structured SIR model. Advances in Difference Equations. 33:1-13. https://doi.org/10.1186/s13662-017-1078-5S11333Strogatz, S, Friedman, M, Mallinck-Rodt, AJ, McKay, S: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Washington (1994)De La Sen, M, Quesada, A: Some equilibrium, stability, instability and oscillatory results for an extended discrete epidemic model with evolution memory. Adv. Differ. Equ. 2013, 234 (2013)Han, Q, Wang, Z: On extinction of infectious diseases for multi-group SIRS models with satured incidence rate. Adv. Differ. Equ. 2015, 333 (2015)Cantó, B, Coll, C, Sánchez, E: Structural identifiability of a model of dialysis. Math. Comput. Model. 50, 733-737 (2009)Cantó, B, Coll, C, Sánchez, E: Identifiability of a class of discretized linear partial differential algebraic equations. Math. Probl. Eng., 1-12 (2011)Craciun, G, Pantea, C: Identifiability of chemical reaction networks. J. Math. Chem. 44, 244-259 (2008)Malik, MB, Salman, M: State-space least mean square. Digit. Signal Process. 18, 334-345 (2008)Ding, F, Liu, PX, Liu, G: Multiinnovatiovation least-squares identification for system modeling. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 18(3), 767-778 (2010)Ben-Zvi, A, McLellan, PJ, McAuley, KB: Identifiability of linear time-invariant differential-algebraic systems, I. The generalized Markov parameter approach. Ind. Eng. Chem. Res. 42, 6607-6618 (2003)Boyadjiev, C, Dimitrova, E: An iterative method for model parameter identification. Comput. Chem. Eng. 29, 941-948 (2005)Ben-Zvi, A, McLellan, PJ, McAuley, KB: Identifiability of linear time-invariant differential-algebraic systems, 2. The differential-algebraic approach. Ind. Eng. Chem. Res. 43, 1251-1259 (2004)Dion, JM, Commault, C, van der Woude, J: Generic properties and control of linear structured systems: a survey. Automatica 39, 1125-1144 (2003)Chou, IC, Voit, EO: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, 57-83 (2009)Schmitz, OJ: Ecology and Ecosystems Conservation. Island Press, Washington (2013

    Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    Get PDF
    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves

    Behavioural syndrome in a solitary predator is independent of body size and growth rate.

    Get PDF
    Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as repeatable foraging behaviour across risk. Pike swimming activity, latency to prey attack, number of successful and unsuccessful prey attacks was measured during the presence/absence of visual contact with a competitor or predator. Foraging behaviour across risks was considered an appropriate indicator of boldness in this solitary predator where a trade-off between foraging behaviour and threat avoidance has been reported. Support was found for a behavioural syndrome, where the rank order differences in the foraging behaviour between individuals were maintained across time and risk situation. However, individual behaviour was independent of body size and growth in conditions of high food availability, showing no evidence to support the state-dependent personality hypothesis. The importance of a combination of spatial and temporal environmental variation for generating growth differences is highlighted

    The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores

    Get PDF
    Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores

    Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8(+ )T cells by dendritic cells loaded with killed allogeneic breast cancer cells

    Get PDF
    INTRODUCTION: The ability of dendritic cells (DCs) to take up whole tumor cells and process their antigens for presentation to T cells ('cross-priming') is an important mechanism for induction of tumor specific immunity. METHODS: In vitro generated DCs were loaded with killed allogeneic breast cancer cells and offered to autologous naïve CD8(+ )T cells in 2-week and/or 3-week cultures. CD8(+ )T cell differentiation was measured by their capacity to secrete effector cytokines (interferon-γ) and kill breast cancer cells. Specificity was measured using peptides derived from defined breast cancer antigens. RESULTS: We found that DCs loaded with killed breast cancer cells can prime naïve CD8(+ )T cells to differentiate into effector cytotoxic T lymphocytes (CTLs). Importantly, these CTLs primed by DCs loaded with killed HLA-A*0201(- )breast cancer cells can kill HLA-A*0201(+ )breast cancer cells. Among the tumor specific CTLs, we found that CTLs specific for HLA-A2 restricted peptides derived from three well known shared breast tumor antigens, namely cyclin B1, MUC-1 and survivin. CONCLUSION: This ability of DCs loaded with killed allogeneic breast cancer cells to elicit multiantigen specific immunity supports their use as vaccines in patients with breast cancer

    Sail or sink: novel behavioural adaptations on water in aerially dispersing species

    Get PDF
    Background Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal (“ballooning”) using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape. Results In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt ‘ballooning’ behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface. Conclusions The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions

    Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. [Methodology/Principal Findings]: Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable. [Conclusions/Significance]: BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.This work was supported by Ministerio de Educacin y Ciencia (BFU2008-00238, CSD2006-00049), and by Junta de Andaluca (P06-CVI-01400) to J.C.R. and by the National Institutes of Health (grant no. 1R01GM079525), and the National Science Foundation (grant no. 0446440) to R.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore