4 research outputs found

    Engineering antimicrobial supramolecular polymer assemblies

    Get PDF
    Antibacterial resistance against conventional antibiotics has emerged as a global health problem. To address this problem, antimicrobial peptides (AMPs) have been recognized as alternatives due to their fast-killing activity and less propensity to induce resistance. Here, the AMPs are engineered via a supramolecular fashion to control and increase their biological performance. The AMPs are modified with ureido-pyrimidinone (UPy) to obtain UPy-AMP monomers, followed by modular self-assembling to realize antibacterial UPy-AMP supramolecular polymers. These positively charged assemblies are illustrated as stable, short fibrous or rod-like UPy-AMP nanostructures with enhanced antibacterial activity and modulable cytotoxicity. Moreover, these antibacterial UPy-AMP assemblies can be internalized by both THP-1 derived macrophages and human kidney cells, which would be an effective potential therapy to deliver the AMPs into mammalian cells to address intracellular infections. Overall, the results present here demonstrate that supramolecular engineering of AMPs provides a powerful tool to enhance the antibacterial activity, modulate cytotoxicity and accelerate the clinical application of AMPs.</p

    Engineering antimicrobial supramolecular polymer assemblies

    Get PDF
    Antibacterial resistance against conventional antibiotics has emerged as a global health problem. To address this problem, antimicrobial peptides (AMPs) have been recognized as alternatives due to their fast-killing activity and less propensity to induce resistance. Here, the AMPs are engineered via a supramolecular fashion to control and increase their biological performance. The AMPs are modified with ureido-pyrimidinone (UPy) to obtain UPy-AMP monomers, followed by modular self-assembling to realize antibacterial UPy-AMP supramolecular polymers. These positively charged assemblies are illustrated as stable, short fibrous or rod-like UPy-AMP nanostructures with enhanced antibacterial activity and modulable cytotoxicity. Moreover, these antibacterial UPy-AMP assemblies can be internalized by both THP-1 derived macrophages and human kidney cells, which would be an effective potential therapy to deliver the AMPs into mammalian cells to address intracellular infections. Overall, the results present here demonstrate that supramolecular engineering of AMPs provides a powerful tool to enhance the antibacterial activity, modulate cytotoxicity and accelerate the clinical application of AMPs.</p

    Development of an Antimicrobial Peptide SAAP-148-Functionalized Supramolecular Coating on Titanium to Prevent Biomaterial-Associated Infections

    Get PDF
    Titanium implants are widely used in medicine but have a risk of biomaterial-associated infection (BAI), of which traditional antibiotic-based treatment is affected by resistance. Antimicrobial peptides (AMPs) are used to successfully kill antibiotic-resistant bacteria. Herein, a supramolecular coating for titanium implants is developed which presents the synthetic antimicrobial and antibiofilm peptide SAAP-148 via supramolecular interactions using ureido-pyrimidinone supramolecular units (UPy-SAAP-148GG). Material characterization of dropcast coatings shows the presence of UPy-SAAP-148GG at the surface. The supramolecular immobilized peptide remains antimicrobially active in dropcast polymer films and can successfully kill (antibiotic-resistant) Staphylococcus aureus, Acinetobacter baumannii, and Escherichia coli. Minor toxicity for human dermal fibroblasts is observed, with a reduced cell attachment after 24 h. Subsequently, a dipcoat coating on titanium implants is developed and tested in vivo in a subcutaneous implant infection mouse model with S. aureus administered locally on the implant before implantation to mimic contamination during surgery. The supramolecular coating containing 5 mol% of UPy-SAAP-148GG significantly prevents colonization of the implant surface as well as of the surrounding tissue, with no signs of toxicity. This shows that supramolecular AMP coatings on titanium are eminently suitable to prevent BAI.</p

    Heparin-guided binding of vascular endothelial growth factor to supramolecular biomaterial surfaces

    Get PDF
    Growth factors can steer the biological response to a biomaterial post implantation. Heparin is a growth factor binding molecule that can coordinate growth factor presentation to cells and therefore is able to regulate many biological processes. One way to functionalize biomaterials with heparin and growth factors is via a supramolecular approach. Here, we show a proof-of-concept study in which a supramolecular approach based on ureido-pyrimidinone (UPy) was used, which allows for modular functionalization. PCLdiUPy was functionalized with a UPy-modified heparin binding peptide (UPy-HBP) to facilitates binding of heparin, which in turn can bind vascular endothelial growth factor (VEGF) via its heparin binding domain. The adsorption of both heparin and VEGF were studied in two different functionalization approaches (pre-complex and two-step) and at different molecular ratios. Quartz crystal microbalance with dissipation energy adsorption data showed that VEGF and pre-complexed heparin:VEGF adsorbed non-specifically, with no distinguish between non-specific adsorption and heparin guided-adsorption. On the biological side, heparin guided-adsorption of Heparin:VEGF enhanced HUVECs surface coverage as compared to non-specific adsorption. These results provide a detailed insight on the molecular sandwich which is useful for new design strategies of supramolecular biomaterials with well-controlled immobilization of different growth factors.</p
    corecore