208 research outputs found

    Positive and Negative Affects in Horse-assisted Coachings

    Get PDF
    The present study examines whether horses can be implemented in coaching in order to change individuals’ positive and negative affects. To this end, an experimental group (n = 46) received a horse-assisted coaching, whereas the control group (n = 46) did not receive any coaching. The short-time intervention consisted of one coaching session with a horse for a duration of two hours. Positive and negative affects were measured with the PANAS (Positive and Negative Affect Schedule) in both groups using a pre-post-test-design. Results reveal that the level of positive affects increased, and the level of negative affects decreased significantly in the intervention group when compared to the control group. This outcome suggests the possibility of improving emotions and states of mood in humans through horse-assisted coaching

    Tn6188 - A Novel Transposon in Listeria monocytogenes Responsible for Tolerance to Benzalkonium Chloride

    Get PDF
    peer-reviewedControlling the food-borne pathogen Listeria (L.) monocytogenes is of great importance from a food safety perspective, and thus for human health. The consequences of failures in this regard have been exemplified by recent large listeriosis outbreaks in the USA and Europe. It is thus particularly notable that tolerance to quaternary ammonium compounds such as benzalkonium chloride (BC) has been observed in many L. monocytogenes strains. However, the molecular determinants and mechanisms of BC tolerance of L. monocytogenes are still largely unknown. Here we describe Tn6188, a novel transposon in L. monocytogenes conferring tolerance to BC. Tn6188 is related to Tn554 from Staphylococcus (S.) aureus and other Tn554-like transposons such as Tn558, Tn559 and Tn5406 found in various Firmicutes. Tn6188 comprises 5117 bp, is integrated chromosomally within the radC gene and consists of three transposase genes (tnpABC) as well as genes encoding a putative transcriptional regulator and QacH, a small multidrug resistance protein family (SMR) transporter putatively associated with export of BC that shows high amino acid identity to Smr/QacC from S. aureus and to EmrE from Escherichia coli. We screened 91 L. monocytogenes strains for the presence of Tn6188 by PCR and found Tn6188 in 10 of the analyzed strains. These isolates were from food and food processing environments and predominantly from serovar 1/2a. L. monocytogenes strains harboring Tn6188 had significantly higher BC minimum inhibitory concentrations (MICs) (28.5 ± 4.7 mg/l) than strains without Tn6188 (14 ± 3.2 mg/l). Using quantitative reverse transcriptase PCR we could show a significant increase in qacH expression in the presence of BC. QacH deletion mutants were generated in two L. monocytogenes strains and growth analysis revealed that ΔqacH strains had lower BC MICs than wildtype strains. In conclusion, our results provide evidence that Tn6188 is responsible for BC tolerance in various L. monocytogenes strains.This work was supported by a grant from the Austrian Science Fund (FWF, http://www.fwf.ac.at/) to SSE (grant no. P22703‐B17), by the European Union funded integrated project BIOTRACER (contract no. 036272) under the 6th RTD framework and by the EU grant FP7‐KBBE‐2010‐4 (FOODSEG)

    Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories

    Get PDF
    Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs

    Late deterioration of left ventricular function after right ventricular pacemaker implantation

    Get PDF
    Objectives: Right ventricular (RV) pacing induces a left bundle branch block pattern on ECG and may promote heart failure. Patients with dual chamber pacemakers (DCPs) who present with progressive reduction in left ventricular ejection fraction (LVEF) secondary to RV pacing are candidates for cardiac resynchronization therapy (CRT). This study analyzes whether upgrading DCP to CRT with the additional implantation of a left ventricular (LV) lead improves LV function in patients with reduced LVEF following DCP implantation. Methods: Twenty-two patients (13 males) implanted with DCPs and a high RV pacing percentage (>90%) were evaluated in term of new-onset heart failure symptoms. The patients were enrolled in this retrospective single-center study after obvious causes for a reduced LVEF were excluded with echocardiography and coronary angiography. In all patients, DCPs were then upgraded to biventricular devices. LVEF was analyzed with a two-sided t-test. QRS duration and brain natriuretic peptide (BNP) levels were analyzed with the unpaired t-test. Results: LVEF declined after DCP implantation from 54±10% to 31±7%, and the mean QRS duration was 161±20 ms during RV pacing. NT-pro BNP levels were elevated (3365±11436 pmol/L). After upgrading to a biventricular device, a biventricular pacing percentage of 98.1±2% was achieved. QRS duration decreased to 108±16 ms and 106±20 ms after 1 and 6 months, respectively. There was a significant increase in LVEF to 38±8% and 41±11% and a decrease in NT- pro BNP levels to 3088±2326 pmol/L and 1860±1838 pmol/L at 1 and 6 months, respectively. Conclusion: Upgrading to CRT may be beneficial in patients with DCPs and heart failure induced by a high RV pacing percentage. (Anatol J Cardiol 2016; 16: 678-83

    Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics

    Get PDF
    A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns

    Altered Cortico–Striatal Functional Connectivity During Resting State in Obsessive–Compulsive Disorder

    Get PDF
    Background: Neuroimaging studies show that obsessive–compulsive disorder (OCD) is characterized by an alteration of the cortico–striato–thalamo–cortical (CSTC) system in terms of an imbalance of activity between the direct and the indirect loop of the CSTC. As resting-state functional connectivity (FC) studies investigated only specific parts of the CSTC in patients with OCD up to now, the present study aimed at exploring FC in the CSTC as a whole. Methods: We investigated potential alterations in resting-state FC within the CSTC system in 44 OCD patients and 40 healthy controls by taking into consideration all relevant nodes of the direct and indirect CSTC loop. Results: Compared to healthy controls, OCD patients showed an increased FC between the left subthalamic nucleus (STN) and the left external globus pallidus (GPe), as well as an increased FC between the left GPe and the left internal globus pallidus (GPi). Conclusion: These findings may contribute to a better understanding of the OCD pathophysiology by providing further information on the connectivity alterations within specific regions of the CSTC system. In particular, increased FC between the STN and the left GPe may play a major role in OCD pathology. This assumption is consistent with the fact that these regions are also the main target sites of therapeutic deep brain stimulation in OCD

    Hereditary Human Prion Diseases: an Update

    Get PDF
    Prion diseases in humans are neurodegenerative diseases which are caused by an accumulation of abnormal, misfolded cellular prion protein known as scrapie prion protein (PrPSc). Genetic, acquired, or spontaneous (sporadic) forms are known. Pathogenic mutations in the human prion protein gene (PRNP) have been identified in 10-15 % of CJD patients. These mutations may be single point mutations, STOP codon mutations, or insertions or deletions of octapeptide repeats. Some non-coding mutations and new mutations in the PrP gene have been identified without clear evidence for their pathogenic significance. In the present review, we provide an updated overview of PRNP mutations, which have been documented in the literature until now, describe the change in the DNA, the family history, the pathogenicity, and the number of described cases, which has not been published in this complexity before. We also provide a description of each genetic prion disease type, present characteristic histopathological features, and the PrPSc isoform expression pattern of various familial/genetic prion diseases
    corecore