28,878 research outputs found

    Peace and Wrath in Paul\u27s Epistle to the Romans

    Full text link
    In this paper I would like to accomplish two things. First, I will draw attention to wrath and peace in Romans, focusing on the three passages in which the terminology of wrath and peace occurs in close proximity: 2:5-10; 5:1-11; and 12:18-21. Second, I will comment on how Paul’s concept of the relationship between wrath and peace is worked out in the unfolding of the epistle

    Fission-Fragment Mass Distribution and Particle Evaporation at low Energies

    Get PDF
    Fusion-fission dynamics is investigated with a special emphasis on fusion reactions at low energy for which shell effects and pairing correlations can play a crucial role leading in particular to multi-modal fission. To follow the dynamical evolution of an excited and rotating nucleus we solve a 2-dimensional Langevin equation taking explicitly light-particle evaporation into account. The confrontation theory-experiment is demonstrated to give interesting information on the model presented, its qualities as well as its shortcomings.Comment: 19 pages, latex, 24 eps-figure

    Accelerator Constraints on Neutralino Dark Matter

    Get PDF
    The constraints on neutralino dark matter \chi obtained from accelerator searches at LEP, the Fermilab Tevatron and elsewhere are reviewed, with particular emphasis on results from LEP 1.5. These imply within the context of the minimal supersymmetric extension of the Standard Model that m_\chi \ge 21.4 GeV if universality is assumed, and yield for large tan\beta a significantly stronger bound than is obtained indirectly from Tevatron limits on the gluino mass. We update this analysis with preliminary results from the first LEP 2W run, and also preview the prospects for future sparticle searches at the LHC.Comment: Presented by J. Ellis at the Workshop on the Identification of Dark Matter, Sheffield, September, 1996. 14 pages; Latex; 12 Fig

    Discovery of the secondary eclipse of HAT-P-11 b

    Full text link
    We report the detection of the secondary eclipse of HAT-P-11 b, a Neptune-sized planet orbiting an active K4 dwarf. Using all available short-cadence data of the Kepler mission, we derive refined planetary ephemeris increasing their precision by more than an order of magnitude. Our simultaneous primary and secondary transit modeling results in improved transit and orbital parameters. In particular, the precise timing of the secondary eclipse allows to pin down the orbital eccentricity to 0.26459−0.00048+0.000690.26459_{-0.00048}^{+0.00069}. The secondary eclipse depth of 6.09−1.11+1.126.09_{-1.11}^{+1.12} ppm corresponds to a 5.5σ5.5\sigma detection and results in a geometric albedo of 0.39±0.070.39\pm0.07 for HAT-P-11 b, close to Neptune's value, which may indicate further resemblances between these two bodies. Due to the substantial orbital eccentricity, the planetary equilibrium temperature is expected to change significantly with orbital position and ought to vary between 630∘630^\circ K and 950∘950^\circ K, depending on the details of heat redistribution in the atmosphere of HAT-P-11 b.Comment: Accepted by A&A, 27/10/201

    Structure and variability in the corona of the ultrafast rotator LO Peg

    Full text link
    Low-mass ultrafast rotators show the typical signatures of magnetic activity and are known to produce flares, probably as a result of magnetic reconnection. As a consequence, the coronae of these stars exhibit very large X-ray luminosities and high plasma temperatures, as well as a pronounced inverse FIP effect. To probe the relationship between the coronal properties with a spectral type of ultra-fast rotators with rotation period P < 1d, we analyse the K3 rapid-rotator LO Peg observed with XMM-Newton and compare it with other low-mass rapid rotators of spectral types G9-M1. We investigate the temporal evolution of coronal properties like the temperatures, emission measures, abundances, densities and the morphology of the involved coronal structures. We find two distinguishable levels of activity in the XMM-Newton observation of LO~Peg, which shows significant X-ray variability both in phase and amplitude, implying the presence of an evolving active region on the surface. The X-ray flux varies by 28%, possibly due to rotational modulation. During our observation, a large X-ray flare with a peak X-ray luminosity of 2E30 erg/s and an energy of 7.3E33 erg was observed. At the flare onset we obtain clear signatures for the occurrence of the Neupert effect. The flare plasma also shows an enhancement of iron by a factor of 2 during the rise and peak phase of the flare. Our modeling analysis suggests that the scale size of the flaring X-ray plasma is smaller than 0.5 R_star. Further, the flare loop length appears to be smaller than the pressure scale height of the flaring plasma. Our studies show that the X-ray properties of the LO~Peg are very similar to those of other low-mass ultrafast rotators, i.e., the X-ray luminosity is very close to saturation, its coronal abundances follow a trend of increasing abundance with increasing first ionisation potential, the so-called inverse FIP effect.Comment: 11 pages, 15 figures and 4 tables. Accepted for publication by Astronomy and Astrophysic
    • …
    corecore