30 research outputs found
Measurement of the Vertical Gradient of the Semidiurnal Tidal Wind Phase in Winter at the 95 Km Level
When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated
Wind regime peculiarities in the lower thermosphere in the winter of 1983/84
Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds
The lower thermosphere wind regime from simultaneous observations over Euroasia (Collm, Dushanbe, Frunze)
The circulation in the lower thermosphere as determined from the results of measurements in 1984 is considered. Ionospheric drift measurements were taken using the method of spaced reception in the long wave range. Other measurements were taken using the D2 method. Average daily values of wind velocity were used. Discontinuity of measurements ranged from a day to a week. Preliminary data were reduced to the common average height of 93 km with the help of vertical profiles of wind velocity components. The results of measurements of zonal and meridional wind velocity components are presented. Zonal circulation changes from westerly to easterly winds were observed in winter, in periods of spring time reversal and during stratomesospheric rises in temperature
Global behavior of the height/seasonal structure of tides between 40 deg and 60 deg latitude
The radars utilized are meteor (2), medium frequency (2) and the new low frequency (1) systems: analysis techniques were exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24-, 12-h tidal amplitudes and phases, which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon), but all stations provide monthly mean resolution. At these latitudes the diurnal tide is generally smaller than the semidiurnal, and displays more variability. However, there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall, wavelengths may be less than 50 km. The dominant semidiurnal tide shows significant regular season structure; wavelengths are generally small (about 50 km) in winter, large in summer (equal to or greater than 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40 deg. Coupling with mean winds is apparent. Data from earlier ATMAP campaigns are mentioned, and reasons for their inadequacies presented
Mesopause region semidiurnal tide over Europe as seen from ground-based wind measurements
Wind measurements carried out at 6 European sites are investigated to set up a climatology of the semidiurnal tide in the mesopause region over Europe for the latitudinal range between 50°N and 56°N. Intercomparison of amplitudes and phases generally shows good agreement of the results from the different measuring systems. The longitudinal variation of the semidiurnal tide is small. The results are compared with an empirical model of the semidiurnal tide
Climatology of the semidiurnal tide at 52-56°N from ground-based radar wind measurements 1985-1995
Long-term wind measurements carried out at 6 northern midlatitude sites (Saskatoon, Sheffield, Juliusruh, Collm, Obninsk, Kazan) are investigated to establish a climatology of the semidiurnal tide in the mesopause region for the narrow latitudinal range between 52°N and 56°N. Comparison of zonal and meridional components shows that in general the horizontal components are circularly polarized. Intercomparison of amplitudes and phases generally shows good agreement between the results from the different measuring systems. The results are compared with an empirical model of the semidiurnal tide. The longitudinal variation of the semidiurnal tide is small in summer, but the tidal amplitudes in winter are larger at Saskatoon and Kazan, compared with the results from the other sites. The possible influence of wave-tidal interaction in the stratosphere on the interannual variability of this difference is discussed
The wind regime of the mesosphere and lower thermosphere during the DYANA campaign-II. Semi-diurnal tide
Co-ordinated ground-based radar measurements carried out during the 15 January-15 March 1990 DYANA campaign at 14 different geographical sites have provided a good opportunity to investigate the characteristics of semi-diurnal tidal variations in the mesosphere/lower thermosphere over a wide spectrum of space/time scales. It is pointed out that significant differences of monthly mean tidal parameters observed at the various sites may be explained by latitudinal and longitudinal effects. Well-defined 2-3-week oscillations of the tidal parameters are found to be typical of all observational sites. Their estimated space scales do not contradict the hypothesis about a possible coupling between these oscillations and the low wave-number processes in the stratosphere. Tidal parameter oscillations with 2-5-day periods may be explained to be effects of the nonstationary processes with longitudinal wave numbers S > 3. © 1994
The wind regime of the mesosphere and lower thermosphere during the DYANA campaign-I. Prevailing winds
During the DYANA campaign, winds and tides at mesospheric and lower thermospheric altitudes were measured by 14 ground based experiments (MF radars, meteor radars and LF-drift systems). The experiments were located between 107°W and 102°E, mostly in northern mid-latitudes with well covered areas in Central and Eastern Europe. Emphasis is placed here upon the vertical profiles and height-time contours of the prevailing zonal and meridional winds with different resolution (15 d, 4d). Generally, westerly winds are observed at heights below 95 km with a strong mesospheric variability and with longitudinal differences between the data of Central Europe, Eastern Europe, Asia and Canada. Planetary waves and a minor stratospheric warming in the first 10 days of February 1990 are the cause of this behaviour. In connection with the stratospheric warming, a wind reversal to summer east winds reaching from the upper stratosphere up to 95 km is observed. The close connection of the behaviour of the stratosphere with the observed longitudinal differences in the mesospheric response on the stratospheric warming and with the occurrence of wind oscillations (10-15 d) is discussed. © 1994
An intercomparison between the GSWM, UARS, and ground based radar observations: a case-study in January 1993
The Global-Scale Wave Model (GSWM) is a steady-state two-dimensional linearized model capable of simulating the solar tides and planetary waves. In an effort to understand the capabilities and limitations of the GSWM throughout the upper mesosphere and thermosphere a comparative analysis with observational data is presented. A majority of the observational data used in this study was collected during the World Day campaign which ran from 20 January to 30 January 1993. During this campaign data from 18 ground-based observational sites across the globe and two instruments located on the UARS spacecraft were analyzed. Comparisons of these data with the simulations from the GSWM indicate that the GSWM results are in reasonable agreement with the observations. However, there are a number of cases where the agreement is not particularly good. One such instance is for the semidiurnal tide in the northern hemisphere, where the GSWM estimates may exceed observations by 50%. Through a number of numerical simulations, it appears that this discrepancy may be due to the eddy diffusivity profiles used by the GSWM. Other differences relating to the diurnal tide and the quasi-two-day wave are presented and discussed. Additionally, a discussion on the biases and aliasing difficulties which may arise in the observational data is alos presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47859/1/585_1997_Article_70151123.pd
Long-period variations of wind parameters in the mesopause region and the solar cycle dependence
A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements (D1) in the l.f. range. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. Later on this result was confirmed by radar meteor wind measurements (D2) at Obninsk and further D1 measurements at Kuhlungsborn and Collm. However, after the years 1972-4 a change in the behaviour of the zonal prevailing wind was observed. At this time we found a significant negative correlation with solar activity with an indication of a new change after 1983. This was obtained from D1 results in Collm and D2 results in Kuhlungsborn not only for winter, but also for summer and even for annual averages. The authors conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control