12 research outputs found
Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation
EGFR and ErbB2 are two members of the ErbB family of receptor Tyr Kinases identified as therapeutic targets for treating carcinomas. Breast carcinoma cells express different complements and variable proportions of ErbB receptor Tyr kinases, which activate unique and redundant signaling cascades that are essential for cell survival. Previously it was shown that a COOH-terminal truncation mutant of the EGFR (EGFR-CD533) blocks EGFR dependent signals and radiosensitizes breast carcinoma cells. In this study the effects of EGFR-CD533 and an analogous truncation mutant of ErbB2 (ErbB2-CD572) on ErbB receptor family dimerization and signaling are further investigated. Using adenoviral vectors in breast carcinoma cell lines with variable ErbB expression profiles, we demonstrate different effects for each deletion mutant. EGFR-CD533 blocks ligand stimulation of EGFR, ErbB2, and ErbB4, but is associated with a compensatory Tyr kinase activity resulting in phosphorylation of ErbB3. In contrast, ErbB2-CD572 produces a weaker, non-specific pattern of ErbB receptor family inhibition, based upon the ErbB expression pattern of the cell type. Investigation of the compensatory Tyr kinase activity associated with EGFR-CD533 expression identified an ErbB3/c-Src signaling pathway that regulates expression of anti-apoptotic Bcl family proteins. This signaling is active in the T47D cell line, which inherently over-express ErbB3, absent in MDA-MB231 cells, which have low ErbB3 expression levels, and is restored in a MDA-MB231 cell line engineered to over-express ErbB3. Furthermore we demonstrate that ErbB3/c-Src signaling is radio-protective, and that its elimination through pharmacologic inhibition of c-Src enhances radiation-induced apoptosis. In summary, these studies identify a novel ErbB3/c-Src survival signal and point to ErbB3 expression levels as an important variable in therapeutic targeting of ErbB receptors in breast carcinoma cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44234/1/10549_2005_Article_9023.pd
Recommended from our members
IMRT for Carcinomas of the Oropharynx and Oral Cavity
The major potential advantages of IMRT have been addressed in a number of preliminary clinical investigations/trials which have generated encouraging results that salivary gland sparing can be achieved with improvements in xerostomia without risking increased failure rates. Dose escalation trials, although documenting the potential of IMRT as a tool for dose escalation, require refinement and intense physician involvement but have produced encouraging loco-regional tumor control rates. Finally, the ability of generating plans with outstanding dose conformality in the radiotherapeutic management of HNSCCs of the OP/(OC) has been clearly established
Improving IMRT dose accuracy via deliverable Monte Carlo optimization for the treatment of head and neck cancer patients
The purpose of this work is to investigate the effect of dose-calculation accuracy on head and neck (H&N) intensity modulated radiation therapy (IMRT) plans by determining the systematic dose-prediction and optimization-convergence errors (DPEs and OCEs), using a superposition/convolution (SC) algorithm. Ten patients with locally advanced H&N squamous cell carcinoma who were treated with simultaneous integrated boost IMRT were selected for this study. The targets consisted of gross target volume (GTV), clinical target volume (CTV), and nodal target volumes (CTV nodes). The critical structures included spinal cord, parotid glands, and brainstem. For all patients, three IMRT plans were created: A: an SC optimized plan
(
SC
opt
)
, B: an
SC
opt
plan recalculated with Monte Carlo
[
MC
(
SC
opt
)
]
, and C: an MC optimized plan
(
MC
opt
)
. For each structure, DPEs and OCEs were estimated as
DPE
SC
=
D
B
−
D
A
and
OCE
SC
=
D
C
−
D
B
where A, B, and C stand for the three different optimized plans as defined above. Deliverable optimization was used for all plans, that is, a leaf-sequencing step was incorporated into the optimization loop at each iteration. The range of
DPE
SC
in the GTV
D
98
varied from
−
1.9
%
to
−
4.9
%
, while the
OCE
SC
ranged from 0.9% to 7.0%. The
DPE
SC
in the contralateral parotid
D
50
reached 8.2%, while the
OCE
SC
in the contralateral parotid
D
50
varied from 0.91% to 6.99%. The
DPE
SC
in cord
D
2
reached
−
3.0
%
, while the
OCE
SC
reached to
−
7.0
%
. The magnitude of the
DPE
SC
and
OCE
SC
differences demonstrate the importance of using the most accurate available algorithm in the deliverable IMRT optimization process, especially for the estimation of normal structure doses
Epidermal Growth Factor Receptor Dependence of Radiation-induced Transcription Factor Activation in Human Breast Carcinoma Cells
Ionizing radiation (1–5 Gy) activates the epidermal growth factor receptor (EGFR), a major effector of the p42/44 mitogen-activated protein kinase (MAPK) pathway. MAPK and its downstream effector, p90 ribosomal S6 kinase (p90RSK), phosphorylate transcription factors involved in cell proliferation. To establish the role of the EGFR/MAPK pathway in radiation-induced transcription factor activation, MDA-MB-231 human breast carcinoma cells were examined using specific inhibitors of signaling pathways. Gel-shift analysis revealed three different profile groups: 1) transcription factors that responded to both radiation (2 Gy) and epidermal growth factor (EGF) (CREB, Egr, Ets, and Stat3); 2) factors that responded to radiation, but not EGF (C/EBP and Stat1); and 3) those that did not respond significantly to either radiation or EGF (AP-1 and Myc). Within groups 1 and 2, a two- to fivefold maximum stimulation of binding activity was observed at 30–60 min after irradiation. Interestingly, only transcription factors that responded to EGF had radiation responses significantly inhibited by the EGFR tyrosine kinase inhibitor, AG1478; these responses were also abrogated by farnesyltransferase inhibitor (FTI) or PD98059, inhibitors of Ras and MEK1/2, respectively. Moreover, radiation-induced increases in CREB and p90RSK phosphorylation and activation of Stat3 and Egr-1 reporter constructs by radiation were all abolished by AG1478. These data demonstrate a distinct radiation response profile at the transcriptional level that is dependent on enhanced EGFR/Ras/MAPK signaling