4,068 research outputs found
Space station impact experiments
Four processes serve to illustrate potential areas of study and their implications for general problems in planetary science. First, accretional processes reflect the success of collisional aggregation over collisional destruction during the early history of the solar system. Second, both catastrophic and less severe effects of impacts on planetary bodies survivng from the time of the early solar system may be expressed by asteroid/planetary spin rates, spin orientations, asteroid size distributions, and perhaps the origin of the Moon. Third, the surfaces of planetary bodies directly record the effects of impacts in the form of craters; these records have wide-ranging implications. Fourth, regoliths evolution of asteroidal surfaces is a consequence of cumulative impacts, but the absence of a significant gravity term may profoundly affect the retention of shocked fractions and agglutinate build-up, thereby biasing the correct interpretations of spectral reflectance data. An impact facility on the Space Station would provide the controlled conditions necessary to explore such processes either through direct simulation of conditions or indirect simulation of certain parameters
Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert atmospheric observatory
A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder
Ovarian dynamics and fecundity regulation in blueback herring, Alosa aestivalis, from the Connecticut River, US
We analyzed ovarian dynamics of anadromous blueback herring, Alosa aestivalis, in Connecticut River with the principal aim of exploring oocyte recruitment and how it shapes the fecundity pattern. We examined the oocyte release strategy and analyzed spawning cyclicity by linking oocyte growth to the degeneration of postovulatory follicles. Females were accordingly classified as pre-spawners, early and late active spawners, and oocyte recruitment intensity was compared among the different spawning phases. Oocyte recruitment occurred continuously and in parallel with spawning activity, a pattern which is diagnostic of indeterminate fecundity. However, both fecundity and oocyte recruitment intensity progressively decreased (tapered) throughout spawning, until the ovary was depleted of vitellogenic oocytes. There was no massive atresia of vitellogenic oocytes at the end of the spawning season, which is atypical of indeterminate spawners. We propose that tapering in oocyte recruitment and fecundity is an adaptation to the high energetic expenditure of the upstream spawning migration
Abnormal Behaviour Of Zero Degree Î-electron Emission On The Projectile Ionic Charge
The 0° δ-electron emission was investigated by an electron-projectile coincidence technique as a function of incoming and outgoing projectile charge state for 0.53 MeV u-1Cuq+ on He. The electron emission spectra vary strongly with initial and final projectile charge state. For pure ionization channels the cross sections follow for low electron energy the q2-scaling law whereas in the binary encounter regime the scaling is reversed. Ctmc calculations are in fair agreement with the experimental data. Š 1991 IOP Publishing Ltd
A Fast bipolar H2 outflow from IRAS 16342-3814: an old star reliving its youth
Some evolved stars in the pre-planetary nebula phase produce
highly-collimated molecular outflows that resemble the accretion-driven jets
and outflows from pre-main sequence stars. We show that IRAS 16342-3814 (the
Water Fountain Nebula) is such an object and present K-band integral field
spectroscopy revealing a fast (> 150 km/s) bipolar H2 outflow. The H2 emission
is shock excited and may arise in fast-moving clumps, accelerated by the
previously observed precessing jet. The total luminosity in H2 is 0.37
L which is comparable with that of accretion-powered outflows from
Class 0 protostars. We also detect CO overtone bandhead emission in the
scattered continuum, indicating hot molecular gas close to the centre, a
feature also observed in a number of protostars with active jets. It seems
likely that the jet and outflow in IRAS 16342-3814 are powered by accretion
onto a binary companion.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Societ
Progesterone From Ovulatory Menstrual Cycles Is an Important Cause of Breast Cancer
Many factors, including reproductive hormones, have been linked to a woman\u27s risk of developing breast cancer (BC). We reviewed the literature regarding the relationship between ovulatory menstrual cycles (MCs) and BC risk. Physiological variations in the frequency of MCs and interference with MCs through genetic variations, pathological conditions and or pharmaceutical interventions revealed a strong link between BC risk and the lifetime number of MCs. A substantial reduction in BC risk is observed in situations without MCs. In genetic or transgender situations with normal female breasts and estrogens, but no progesterone (P4), the incidence of BC is very low, suggesting an essential role of P4. During the MC, P4 has a strong proliferative effect on normal breast epithelium, whereas estradiol (E2) has only a minimal effect. The origin of BC has been strongly linked to proliferation associated DNA replication errors, and the repeated stimulation of the breast epithelium by P4 with each MC is likely to impact the epithelial mutational burden. Long-lived cells, such as stem cells, present in the breast epithelium, can carry mutations forward for an extended period of time, and studies show that breast tumors tend to take decades to develop before detection. We therefore postulate that P4 is an important factor in a woman\u27s lifetime risk of developing BC, and that breast tumors arising during hormonal contraception or after menopause, with or without menopausal hormone therapy, are the consequence of the outgrowth of pre-existing neoplastic lesions, eventually stimulated by estrogens and some progestins
Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem
Theory of electrical spin injection from a ferromagnetic (FM) metal into a
normal (N) conductor is presented. We show that tunnel contacts (T) can
dramatically increase spin injection and solve the problem of the mismatch in
the conductivities of a FM metal and a semiconductor microstructure. We also
present explicit expressions for the spin-valve resistance of FM-T-N- and
FM-T-N-T-FM-junctions with tunnel contacts at the interfaces and show that the
resistance includes both positive and negative contributions (Kapitza
resistance and injection conductivity, respectively).Comment: 4 pages, to appear in Phys. Rev. B (rapid communications
Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions
Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material.
Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species.
Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice.
Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations
The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models
We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere
- âŚ