6,721 research outputs found
Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography
The analysis of spontaneous functional connectivity (sFC) reveals the statistical connections between regions of the brain consistent with underlying functional communication networks within the brain. In this work, we describe the implementation of a complete all-to-all network analysis of resting state neuronal activity from magnetoencephalography (MEG). Using graph theory to define networks at the dipole level, we established functionally defined regions by k-means clustering cortical surface locations using Eigenvector centrality (EVC) scores from the all-to-all adjacency model. Permutation testing was used to estimate regions with statistically significant connections compared to empty room data, which adjusts for spatial dependencies introduced by the MEG inverse problem. In order to test this model, we performed a series of numerical simulations investigating the effects of the MEG reconstruction on connectivity estimates. We subsequently applied the approach to subject data to investigate the effectiveness of our method in obtaining whole brain networks. Our findings indicated that our model provides statistically robust estimates of functional region networks. Application of our phase locking network methodology to real data produced networks with similar connectivity to previously published findings, specifically, we found connections between contralateral areas of the arcuate fasciculus that have been previously investigated. The use of data-driven methods for neuroscientific investigations provides a new tool for researchers in identifying and characterizing whole brain functional connectivity networks. © 2014 Schmidt, Ghuman and Huppert
The Hitchhiker's Guide to the Wave Function
The electronic wave function of molecules is 3N-dimensional and inseparable in the coordinates of the N electrons. Whereas molecular orbitals are often invoked to visualize the electronic structure, they are nonunique, with the same 3N-dimensional wave function being represented by an infinite number of 3-D, one-electron functions (orbitals). Furthermore, multireference wave functions cannot be described by an antisymmetrized product of a single set of occupied orbitals. What is required is a way to visualize the full dimensionality of the wave function, including the effects of correlation, as a 3N-dimensional being would be able to do. In the past 5 years, we have been developing a way to analyze and visualize highly dimensional wave functions by focusing on the structure of the repeating unit demanded by fermionic behavior. This 3N-dimensional repeating unit, the wave function "tile", can be projected onto the three dimensions of each electron, in turn, to reveal the complete electronic structure. It is found that the tile reproduces canonical chemical motifs such as core-electrons, single bonds and lone pairs. Multiple bonds emerge as the "banana" bonds favored by Pauling. As a function of the reaction coordinate, electron motions are visualized that correspond to the curly arrow notation of organic chemists. Excited states can also be inspected. Analyzing a wave function in terms of fermionic tiling allows for insight not facilitated by the inspection of orbitals or configuration interaction vectors: The wave function tiles of resonance structures reveal that electron correlation in benzene pushes opposing spin electrons to occupy alternate Kekulé structures, and in C2, the emerging structure supports the notion of a triply bonded structure with a weak, fourth bonding contribution
The electronic structure of benzene from a tiling of the correlated 126-dimensional wavefunction
The electronic structure of benzene is a battleground for competing viewpoints of electronic structure, with valence bond theory localising electrons within superimposed resonance structures, and molecular orbital theory describing delocalised electrons. But, the interpretation of electronic structure in terms of orbitals ignores that the wavefunction is anti-symmetric upon interchange of like-spins. Furthermore, molecular orbitals do not provide an intuitive description of electron correlation. Here we show that the 126-dimensional electronic wavefunction of benzene can be partitioned into tiles related by permutation of like-spins. Employing correlated wavefunctions, these tiles are projected onto the three dimensions of each electron to reveal the superposition of Kekulé structures. But, opposing spins favour the occupancy of alternate Kekulé structures. This result succinctly describes the principal effect of electron correlation in benzene and underlines that electrons will not be spatially paired when it is energetically advantageous to avoid one another
Assessing Knowledge Structures in a Constructive Statistical Learning Environment
In this report, the method of free recall is put forward as a tool to evaluate a prototypical statistical learning environment. A number of students from the faculty of Health Sciences, Maastricht University, the Netherlands, were required to write down whatever they could remember of a statistics course in which they had participated. By means of examining the free recall protocols of the participants, insight can be obtained into the mental representations they had formed with respect to three statistical concepts. Quantitative as well as qualitative analyses of the free recall protocols showed that the effect of the constructive learning environment was not in line with the expectations. Despite small-group discussions on the statistical concepts, students appeared to have disappointingly low levels of conceptual understanding
The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003
Many past studies of cosmological gamma-ray bursts (GRBs) have been limited
because of the large distance to typical GRBs, resulting in faint afterglows.
There has long been a recognition that a nearby GRB would shed light on the
origin of these mysterious cosmic explosions, as well as the physics of their
fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an
estimated rate of localisation of one every decade. Here, we report the
discovery of bright optical afterglow emission from GRB 030329. Our prompt
dissemination and the brilliance of the afterglow resulted in extensive
followup (more than 65 telescopes) from radio through X-ray bands, as well as
measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of
GRB 030329 are similar to those of cosmological GRBs (after accounting for the
small distance), making this the nearest known cosmological GRB. Observations
have already securely identified the progenitor as a massive star that exploded
as a supernova, and we anticipate futher revelations of the GRB phenomenon from
studies of this source.Comment: 13 pages, 4 figures. Original tex
Feasibility of Photofrin II as a radiosensitizing agent in solid tumors - Preliminary results
Background: Photofrin II has been demonstrated to serve as a specific and selective radiosensitizing agent in in vitro and in vivo tumor models. We aimed to investigate the feasibility of a clinical application of Photofrin II. Material and Methods: 12 patients were included in the study (7 unresectable solid tumors of the pelvic region, 3 malignant gliomas, 1 recurrent oropharyngeal cancer, 1 recurrent adenocarcinoma of the sphenoid sinus). The dose of ionizing irradiation was 30-50.4 Gy; a boost irradiation of 14 Gy was added for the pelvic region. All patients were intravenously injected with 1 mg/kg Photofrin II 24 h prior to the commencement of radiotherapy. Magnetic resonance imaging (MRI) controls and in some cases positron emission tomography (PET) were performed in short intervals. The mean follow-up was 12.9 months. Results: No major adverse events were noted. Minor adverse events consisted of mild diarrhea, nausea and skin reactions. A complete remission was observed in 4/12 patients. A reduction in local tumor volume of > 45% was achieved in 4/12 patients. Stable disease was observed in 4/12 patients. 1 patient showed local disease progression after 5 months. Conclusion: The early follow-up results are encouraging regarding the feasibility of the application of Photofrin II as a radiosensitizing agent
Long-term development of the industrial sector – case study about electrification, fuel switching, and CCS in the USA
In the urgent quest for solutions to mitigate climate change, the industry is one of the most challenging sectors to decarbonize. In this work, a novel simulation framework is presented to model the investment decisions in industry, the Industrial Sector Module (ISM) of the ModUlar energy system Simulation Environment (MUSE). This work uses the ISM to quantify effects of three combined measures for CO2 emission reduction in industry, i.e. fuel switching, electrification, and adoption of Carbon Capture and Storage (CCS) and to simulate plausible scenarios (base scenario and climate ambitious scenario) for curbing emissions in the iron and steel sector in the USA between 2010 and 2050. Results show that when the climate ambitious scenario is applied, the cumulative emissions into the atmosphere (2,158 Mt CO2) are reduced by 40% in comparison to the base scenario (3,608 Mt CO2). This decarbonization gap between both scenarios intensifies over time; in the year 2050, the CO2 intensity in the climate ambitious scenario is 81% lower in comparison to the base scenario. The study shows that major contributions to industry decarbonization can come from the further uptake of secondary steel production. Results show also that a carbon tax drives the decarbonization process but is not sufficient on its own. In addition, the uptake of innovative low-carbon breakthrough technologies is necessary. It is concluded that industrial electrification is counterproductive for climate change mitigation, if electricity is not provided by low-carbon sources. Overall, fuel switching, industrial electrification, and CCS adoption as single measures have a limited decarbonization impact, compared to an integrated approach that implements all the measures together providing a much more attractive solution for CO2 mitigation
- …