62,826 research outputs found

    The light-cone gauge without prescriptions

    Full text link
    Feynman integrals in the physical light-cone gauge are harder to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices --- prescriptions --- some successful ones and others not so much so. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative third approach, which for practical computations could dispense with prescriptions as well as prescinding the necessity of careful stepwise watching out of causality would be of great advantage. And this third option is realizable within the context of negative dimensions, or as it has been coined, negative dimensional integration method, NDIM for short.Comment: 9 pages, PTPTeX (included

    Feynman integrals with tensorial structure in the negative dimensional integration scheme

    Get PDF
    Negative dimensional integration method (NDIM) is revealing itself as a very useful technique for computing Feynman integrals, massless and/or massive, covariant and non-covariant alike. Up to now, however, the illustrative calculations done using such method are mostly covariant scalar integrals, without numerator factors. Here we show how those integrals with tensorial structures can also be handled with easiness and in a straightforward manner. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. In this line, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerges in the computation of a standard one-loop self-energy diagram. One of the novel and as yet unsuspected bonus is that there are degeneracies in the way one can express the final result for the referred Feynman integral.Comment: 9 pages, revtex, no figure

    Negative dimensional approach for scalar two-loop three-point and three-loop two-point integrals

    Get PDF
    The well-known DD-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.Comment: 6 pages, 7 figures, Revte

    Two-loop self-energy diagrams worked out with NDIM

    Get PDF
    In this work we calculate two two-loop massless Feynman integrals pertaining to self-energy diagrams using NDIM (Negative Dimensional Integration Method). We show that the answer we get is 36-fold degenerate. We then consider special cases of exponents for propagators and the outcoming results compared with known ones obtained via traditional methods.Comment: LaTeX, 10 pages, 2 figures, styles include

    Prescriptionless light-cone integrals

    Get PDF
    Perturbative quantum gauge field theory seen within the perspective of physical gauge choices such as the light-cone entails the emergence of troublesome poles of the type (k⋅n)−α(k\cdot n)^{-\alpha} in the Feynman integrals, and these come from the boson field propagator, where α=1,2,...\alpha = 1,2,... and nμn^{\mu} is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle to overcome in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research for over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development in this front which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes attached to this new technique in that not only it renders the light-cone prescriptionless, but by the very nature of it, can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k⋅n)−α[(k−p)⋅n]−β(k\cdot n)^{-\alpha}[(k-p)\cdot n]^{-\beta}, (β=1,2,...)(\beta = 1,2,...). In this work we demonstrate how all this can be done.Comment: 6 pages, no figures, Revtex style, reference [2] correcte

    Negative Dimensional Integration: "Lab Testing" at Two Loops

    Full text link
    Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.Comment: 10 pages, LaTeX2e, uses style jhep.cls (included

    Non-planar double-box, massive and massless pentabox Feynman integrals in negative dimensional approach

    Get PDF
    Negative dimensional integration method (NDIM) is a technique which can be applied, with success, in usual covariant gauge calculations. We consider three two-loop diagrams: the scalar massless non-planar double-box with six propagators and the scalar pentabox in two cases, where six virtual particles have the same mass and in the case where all of them are massless. Our results are given in terms hypergeometric functions of Mandelstam variables and for arbitrary exponents of propagators and dimension DD as well.Comment: Latex, 12 pages, 2 figures, uses axodraw (included
    • …
    corecore