65,215 research outputs found

    Chandra observations of the galaxy cluster Abell 1835

    Get PDF
    We present the analysis of 30 ksec of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in in the inner 30 kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the outer regions of the cluster to ~4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5. The projected mass within a radius of ~150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (~6x10^8 yr) with an integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30 kpc. We discuss the implications of our results in the light of recent RGS observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA

    Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra

    Full text link
    We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra Observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parameterizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White (1997), we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r_2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble Constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe, Omega_m = 0.30^{+0.04}_{-0.03}, and measure a positive cosmological constant, Omega_Lambda = 0.95^{+0.48}_{-0.72}. Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.Comment: Accepted for publication in MNRAS Letters (6 pages, 3 figures

    New mechanization equations for aided inertial navigation systems

    Get PDF
    Inertial navigation equations are developed which use area navigation (RNAV) waypoints and runway references as coodinate centers. The formulation is designed for aided inertial navigation systems and gives a high numerical accuracy through all phases of flight. A new formulation of the error equations for inertial navigation systems is also presented. This new formulation reduces numerical calculations in the use of Kalman filters for aided inertial navigation systems

    Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    Get PDF
    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat

    Vitamin A and iron supplementation of Indonesian pregnant women benefits vitamin A status of their infants

    Get PDF
    Many Indonesian infants have an inadequate nutritional status, which may be due in part to inadequate maternal nutrition during pregnancy. This study was designed to investigate whether infant nutritional status could be improved by maternal vitamin A and Fe supplementation during gestation. Mothers of these infants from five villages had been randomly assigned on an individual basis, supervised and double-blind, to receive supplementation once weekly from approximately 18 weeks of pregnancy until delivery. Supplementation comprised 120 mg Fe and 500 μg folic acid with or without 4800 retinol equivalent vitamin A. Mothers of infants from four other villages who participated in the national Fe and folic acid supplementation programme were also recruited; intake of tablets was not supervised. Anthropometric and biochemical parameters of infants and their mothers were assessed approximately 4 months after delivery. Infants of mothers supplemented with vitamin A plus Fe had higher serum retinol concentrations than infants of mothers supplemented with Fe alone. However, the proportion of infants with serum retinol concentrations 70 n all groups. Maternal and infant serum retinol concentrations were correlated. Fe status, weight and length of infants were similar in all groups. Fe status of girls was better than that of boys, but boys were heavier and longer. We conclude that supplementation with vitamin A in conjunction with Fe supplementation of women during pregnancy benefits vitamin A status of their infants. However, considering the large proportion of infants with marginal serum retinol concentrations, it may still be necessary to increase their vitamin A intake

    The faint-galaxy hosts of gamma-ray bursts

    Full text link
    The observed redshifts and magnitudes of the host galaxies of gamma-ray bursts (GRBs) are compared with the predictions of three basic GRB models, in which the comoving rate density of GRBs is (1) proportional to the cosmic star formation rate density, (2) proportional to the total integrated stellar density and (3) constant. All three models make the assumption that at every epoch the probability of a GRB occuring in a galaxy is proportional to that galaxy's broad-band luminosity. No assumption is made that GRBs are standard candles or even that their luminosity function is narrow. All three rate density models are consistent with the observed GRB host galaxies to date, although model (2) is slightly disfavored relative to the others. Models (1) and (3) make very similar predictions for host galaxy magnitude and redshift distributions; these models will be probably not be distinguished without measurements of host-galaxy star-formation rates. The fraction of host galaxies fainter than 28 mag may constrain the faint end of the galaxy luminosity function at high redshift, or, if the fraction is observed to be low, may suggest that the bursters are expelled from low-luminosity hosts. In all models, the probability of finding a z<0.008 GRB among a sample of 11 GRBs is less than 10^(-4), strongly suggesting that GRB 980425, if associated with supernova 1998bw, represents a distinct class of GRBs.Comment: 7 pages, ApJ in press, revised to incorporate yet more new and revised observational result

    On the Electronic Spectroscopy of Closed Shell Cations Derived From Resonance Stabilized Radicals: Insights From Theory and Franck-Condon Analysis

    Get PDF
    Context. Recent attention has been directed on closed-shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium, and tropylium cations were recently reported. The visible spectrum of benzylium exhibits a large Franck-Condon (FC) envelope, inconsistent with diffuse interstellar band carriers. Aims. We perform a computational analysis of the experimentally studied benzylium spectrum before extending the methods to a range of larger, closed-shell aromatic cations to determine the potential for this class of systems as diffuse interstellar band carriers. Methods. Density functional theory (DFT), time-dependant ((TD)DFT), and multi-configurational self-consistent field second-order perturbation theory (MRPT2) methods in concert with multidimensional FC analysis is used to model the benzylium spectrum. These methods are extended to larger closed-shell aromatic hydrocarbon cations derived from resonance-stabilized radicals, which are predicted to show strong S0 → Sn transitions in the visible region. The ionization energies of a range of these systems are also calculated by DFT. Results. The simulated benzylium spectrum was found to yield excellent agreement with the experimental spectrum showing an extended progression in a low frequency (510 cm-1) ring distortion mode. The FC progression was found to be significantly quenched in the larger species: 1-indanylium, 1-naphthylmethylium, and fluorenium. Excitation and ionization energies of the closed-shell cations were found to be consistent with diffuse interstellar band carriers, with the former lying in the visible range and the latter straddling the Lyman limit in the 13−14 eV range. Conclusions. Large closed-shell polycyclic aromatic hydrocarbon cations remain viable candidate carriers of the diffuse interstellar bands

    Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments

    Get PDF
    This review summarizes the present status of an ongoing experimental effort to provide reliable rate coefficients for dielectronic recombination of highly charged iron ions for the modeling of astrophysical and other plasmas. The experimental work has been carried out over more than a decade at the heavy-ion storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. The experimental and data reduction procedures are outlined. The role of previously disregarded processes such as fine-structure core excitations and trielectronic recombination is highlighted. Plasma rate coefficients for dielectronic recombination of Fe^q+ ions (q=7-10, 13-22) and Ni^25+ are presented graphically and in a simple parameterized form allowing for easy use in plasma modeling codes. It is concluded that storage-ring experiments are presently the only source for reliable low-temperature dielectronic recombination rate-coefficients of complex ions.Comment: submitted for publication in the International Review of Atomic and Molecular Physics, 8 figures, 3 tables, 68 reference
    • …
    corecore