40,972 research outputs found

    Fast Hole Tunneling Times in Germanium Hut Wires Probed by Single-Shot Reflectometry

    Get PDF
    Heavy holes confined in quantum dots are predicted to be promising candidates for the realization of spin qubits with long coherence times. Here we focus on such heavy-hole states confined in Germanium hut wires. By tuning the growth density of the latter we can realize a T-like structure between two neighboring wires. Such a structure allows the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot, with charge-transfer signals as high as 0.3e. By integrating the T-like structure into a radio-frequency reflectometry setup, single-shot measurements allowing the extraction of hole tunneling times are performed. The extracted tunneling times of less than 10μ\mus are attributed to the small effective mass of Ge heavy-hole states and pave the way towards projective spin readout measurements

    Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge

    Full text link
    Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are characterized by resonant tunneling spectroscopy in the presence of high magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman splitting of the acceptor levels. In an in-plane field, on the other hand, the Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is shown to be a consequence of the huge light hole-heavy hole splitting caused by a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page

    Highly charged ions: optical clocks and applications in fundamental physics

    Full text link
    Recent developments in frequency metrology and optical clocks have been based on electronic transitions in atoms and singly charged ions as references. These systems have enabled relative frequency uncertainties at a level of a few parts in 101810^{-18}. This accomplishment not only allows for extremely accurate time and frequency measurements, but also to probe our understanding of fundamental physics, such as variation of fundamental constants, violation of the local Lorentz invariance, and forces beyond the Standard Model of Physics. In addition, novel clocks are driving the development of sophisticated technical applications. Crucial for applications of clocks in fundamental physics are a high sensitivity to effects beyond the Standard Model and Einstein's Theory of Relativity and a small frequency uncertainty of the clock. Highly charged ions offer both. They have been proposed as highly accurate clocks, since they possess optical transitions which can be extremely narrow and less sensitive to external perturbations compared to current atomic clock species. The selection of highly charged ions in different charge states offers narrow transitions that are among the most sensitive ones for a change in the fine-structure constant and the electron-to-proton mass ratio, as well as other new physics effects. Recent advances in trapping and sympathetic cooling of highly charged ions will in the future enable high accuracy optical spectroscopy. Progress in calculating the properties of selected highly charged ions has allowed the evaluation of systematic shifts and the prediction of the sensitivity to the "new physics" effects. This article reviews the current status of theory and experiment in the field.Comment: 53 pages, 16 figures, submitted to RM

    A search for transit timing variation

    Full text link
    Photometric follow-ups of transiting exoplanets (TEPs) may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. In 2009 we launched an international observing campaign, the aim of which is to detect and characterise signals of transit timing variation (TTV) in selected TEPs. The programme is realised by collecting data from 0.6--2.2-m telescopes spread worldwide at different longitudes. We present our observing strategy and summarise first results for WASP-3b with evidence for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.Comment: Poster contribution to Detection and Dynamics of Transiting Exoplanets (Haute Provence Observatory Colloquium, 23-27 August 2010
    corecore