2,131 research outputs found
Two-stage permanent deactivation of the boron-oxygen-related recombination center in crystalline silicon
We analyze the lifetime evolution during permanent deactivation of the boron-oxygen-related defect center (BO defect) in boron-doped, oxygen-rich Czochralski-grown silicon (Cz-Si). In particular, we examine the impact of the samples' states prior to the permanent deactivation process. Samples that were initially fully degraded show a two-stage deactivation process consisting of a fast and a slow deactivation component, which can be fitted by two exponential functions with their respective rate constants. For both components, we find a pronounced increase of the rate constants with illumination intensity. In addition, we observe that the rate constant describing the slow deactivation component of samples deactivated after complete degradation is identical to the rate constant determined on samples, which were deactivated immediately after annealing in darkness. In the latter case, a purely mono-exponential deactivation behavior was observed. Our study clearly demonstrates that the asymptotic deactivation behavior does not depend on the initial state of the lifetime sample. We prove that the same is valid for initially degraded and dark-annealed PERC solar cells. Hence, it is not necessary to first degrade the sample to realize a fast BO deactivation
Multi-level Service Approach for Flexible Support of Design Processes
Part III: Sustainable ServicesInternational audienceThe need to answer quickly to new market opportunities and the high variability of consumer demands tend industrial companies to review their adopted organisation, so to improve their reactivity and to facilitate the coupling with the business enactment. Therefore, these companies require agility in their information systems to allow business needs scalability and design process flexibility. We propose in this paper, the business activities as a service based on the service paradigm and whereas a design process is made of agile services orchestrations. We discuss the interest to use a service-oriented approach and propose a layered architecture for design process enactment
A piezoelectric microvalve for compact high frequency high differential pressure micropumping systems
A piezoelectrically driven hydraulic amplification microvalve for use in compact high-performance hydraulic pumping systems was designed, fabricated, and experimentally characterized. High-frequency, high-force actuation capabilities were enabled through the incorporation of bulk piezoelectric material elements beneath a micromachined annular tethered-piston structure. Large valve stroke at the microscale was achieved with an hydraulic amplification mechanism that amplified (40/spl times/-50/spl times/) the limited stroke of the piezoelectric material into a significantly larger motion of a micromachined valve membrane with attached valve cap. These design features enabled the valve to meet simultaneously a set of high frequency (/spl ges/1 kHz), high pressure(/spl ges/300 kPa), and large stroke (20-30 /spl mu/m) requirements not previously satisfied by other hydraulic flow regulation microvalves. This paper details the design, modeling, fabrication, assembly, and experimental characterization of this valve device. Fabrication challenges are detailed
Mesoscopic interplay of superconductivity and ferromagnetism in ultra-small metallic grains
We review the effects of electron-electron interactions on the ground-state
spin and the transport properties of ultra-small chaotic metallic grains. Our
studies are based on an effective Hamiltonian that combines a superconducting
BCS-like term and a ferromagnetic Stoner-like term. Such terms originate in
pairing and spin exchange correlations, respectively. This description is valid
in the limit of a large dimensionless Thouless conductance. We present the
ground-state phase diagram in the fluctuation-dominated regime where the
single-particle mean level spacing is comparable to the bulk BCS pairing gap.
This phase diagram contains a regime in which pairing and spin exchange
correlations coexist in the ground-state wave function. We discuss the
calculation of the tunneling conductance for an almost-isolated grain in the
Coulomb-blockade regime, and present measurable signatures of the competition
between superconductivity and ferromagnetism in the mesoscopic fluctuations of
the conductance.Comment: 6 pages, 3 figures, To be published in the proceedings of the NATO
Advance Research Workshop "Recent Advances in Nonlinear Dynamics and Complex
System Physics.
RTZen: Highly Predictable, Real-Time Java Middleware for Distributed and Embedded Systems
Distributed real-time and embedded (DRE) applications possess stringent quality of service (QoS) requirements, such as predictability, latency, and throughput constraints. Real-Time CORBA, an open middleware standard, allows DRE applications to allocate, schedule, and control resources to ensure predictable end-to-end QoS. The Real-Time Specification for Java (RTSJ) has been developed to provide extensions to Java so that it can be used for real-time systems, in order to bring Java's advantages, such as portability and ease of use, to real-time applications.In this paper, we describe RTZen, an implementation of a Real-Time CORBA Object Request Broker (ORB), designed to comply with the restrictions imposed by RTSJ. RTZen is designed to eliminate the unpredictability caused by garbage collection and improper support for thread scheduling through the use of appropriate data structures, threading models, and memory scopes. RTZen's architecture is also designed to hide the complexities of RTSJ related to distributed programming from the application developer. Empirical results show that RTZen is highly predictable and has acceptable performance. RTZen therefore demonstrates that Real-Time CORBA middleware implemented in real-time Java can meet stringent QoS requirements of DRE applications, while supporting safer, easier, cheaper, and faster development in real-time Java
Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space-time
Gravitational radiation of binary systems can be studied by using the
adiabatic approximation in General Relativity. In this approach a small
astrophysical object follows a trajectory consisting of a chained series of
bounded geodesics (orbits) in the outer region of a Kerr Black Hole,
representing the space time created by a bigger object. In our paper we study
the entire class of orbits, both of constant radius (spherical orbits), as well
as non-null eccentricity orbits, showing a number of properties on the physical
parameters and trajectories. The main result is the determination of the
geometrical locus of all the orbits in the space of physical parameters in Kerr
space-time. This becomes a powerful tool to know if different orbits can be
connected by a continuous change of their physical parameters. A discussion on
the influence of different values of the angular momentum of the hole is given.
Main results have been obtained by analytical methods.Comment: 26 pages, 12 figure
The response function of a sphere in a viscoelastic two-fluid medium
In order to address basic questions of importance to microrheology, we study
the dynamics of a rigid sphere embedded in a model viscoelastic medium
consisting of an elastic network permeated by a viscous fluid. We calculate the
complete response of a single bead in this medium to an external force and
compare the result to the commonly-accepted, generalized Stokes-Einstein
relation (GSER). We find that our response function is well approximated by the
GSER only within a particular frequency range determined by the material
parameters of both the bead and the network. We then discuss the relevance of
this result to recent experiments. Finally we discuss the approximations made
in our solution of the response function by comparing our results to the exact
solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure
- …