912 research outputs found

    Advancing Smart Manufacturing in Europe: Experiences from Two Decades of Research and Innovation Projects

    Get PDF
    In the past two decades, a large amount of attention has been devoted to the introduction of smart manufacturing concepts and technologies into industrial practice. In Europe, these efforts have been supported by European research and innovation programs, bringing together research and application parties. In this paper, we provide an overview of a series of four content-wise connected projects on the European scale that are aimed at advancing smart manufacturing, with a focus on connecting processes on smart factory shop floors to manufacturing equipment on the one hand and enterprise-level business processes on the other hand. These projects cover several tens of application cases across Europe. We present our experiences in the form of a single, informal longitudinal case study, highlighting both the major advances and the current limitations of developments. To organize these experiences, we place them in the context of the well-known RAMI4.0 reference framework for Industry 4.0 (covering the ISA-95 standard). Then, we analyze the experiences, both the positive ones and those including problems, and draw our learnings from these. In doing so, we do not present novel technological developments in this paper—these are presented in the papers we refer to—but concentrate on the main issues we have observed to guide future developments in research efforts and industrial innovation in the smart industry domain

    Neutron stars in generalized f(R) gravity

    Full text link
    Quartic gravity theory is considered with the Einstein-Hilbert Lagrangean R+aR2+bRμνRμν,R+aR^{2}+bR_{\mu \nu}R^{\mu \nu}, RμνR_{\mu \nu} being Ricci\'s tensor and R the curvature scalar. The parameters aa and bb are taken of order 1 km2.^{2}. Arguments are given which suggest that the effective theory so obtained may be a plausible approximation of a viable theory. A numerical integration is performed of the field equations for a free neutron gas. As in the standard Oppenheimer-Volkoff calculation the star mass increases with increasing central density until about 1 solar mass and then decreases. However a dramatic difference exists in the behaviour of the baryon number, which increases monotonically. The calculation suggests that the theory allows stars in equilibrium with arbitrary baryon number, no matter how large.Comment: Keywords: stars, neutron stars; gravity; modified gravity Accepted in Astrophysics and Space Scienc

    Strong Cosmic Censorship and Causality Violation

    Full text link
    We investigate the instability of the Cauchy horizon caused by causality violation in the compact vacuum universe with the topology B×S1×RB\times {\bf S}^{1}\times {\bf R}, which Moncrief and Isenberg considered. We show that if the occurrence of curvature singularities are restricted to the boundary of causality violating region, the whole segments of the boundary become curvature singularities. This implies that the strong cosmic censorship holds in the spatially compact vacuum space-time in the case of the causality violation. This also suggests that causality violation cannot occur for a compact universe.Comment: corrected version, 8 pages, one eps figure is include

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN∗=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γ∼rF/rN∗≪1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte

    Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism

    Full text link
    The main goal of this paper is to get in a straightforward form the field equations in metric f(R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar-tensor approach. We start with a brief review of the Einstein-Hilbert action, together with the Gibbons-York-Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f(R) gravity, including the discussion about boundaries, and we compare with the Gibbons-York-Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.Comment: 12 pages, title changes by referee recommendation. Accepted for publication in General Relativity and Gravitation. Matches with the accepted versio

    Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage

    Get PDF
    OBJECTIVES: The recommendation of induced hypertension for delayed cerebral ischemia treatment after aneurysmal subarachnoid hemorrhage has been challenged recently and ideal pressure targets are missing. A new concept advocates an individual cerebral perfusion pressure where cerebral autoregulation functions best to ensure optimal global perfusion. We characterized optimal cerebral perfusion pressure at time of delayed cerebral ischemia and tested the conformity of induced hypertension with this target value. DESIGN: Retrospective analysis of prospectively collected data. SETTING: University hospital neurocritical care unit. PATIENTS: Thirty-nine aneurysmal subarachnoid hemorrhage patients with invasive neuromonitoring (20 with delayed cerebral ischemia, 19 without delayed cerebral ischemia). INTERVENTIONS: Induced hypertension greater than 180 mm Hg systolic blood pressure. MEASUREMENTS AND MAIN RESULTS: Changepoint analysis was used to calculate significant changes in cerebral perfusion pressure, optimal cerebral perfusion pressure, and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure 48 hours before delayed cerebral ischemia diagnosis. Optimal cerebral perfusion pressure increased 30 hours before the onset of delayed cerebral ischemia from 82.8 +/- 12.5 to 86.3 +/- 11.4 mm Hg (p < 0.05). Three hours before delayed cerebral ischemia, a changepoint was also found in the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure (decrease from -0.2 +/- 11.2 to -7.7 +/- 7.6 mm Hg; p < 0.05) with a corresponding increase in pressure reactivity index (0.09 +/- 0.33 to 0.19 +/- 0.37; p < 0.05). Cerebral perfusion pressure at time of delayed cerebral ischemia was lower than in patients without delayed cerebral ischemia in a comparable time frame (cerebral perfusion pressure delayed cerebral ischemia 81.4 +/- 8.3 mm Hg, no delayed cerebral ischemia 90.4 +/- 10.5 mm Hg; p < 0.05). Inducing hypertension resulted in a cerebral perfusion pressure above optimal cerebral perfusion pressure (+12.4 +/- 8.3 mm Hg; p < 0.0001). Treatment response (improvement of delayed cerebral ischemia: induced hypertension(+) [n = 15] or progression of delayed cerebral ischemia: induced hypertension(-) [n = 5]) did not correlate to either absolute values of cerebral perfusion pressure or optimal cerebral perfusion pressure, nor the resulting difference (cerebral perfusion pressure [p = 0.69]; optimal cerebral perfusion pressure [p = 0.97]; and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure [p = 0.51]). CONCLUSIONS: At the time of delayed cerebral ischemia occurrence, there is a significant discrepancy between cerebral perfusion pressure and optimal cerebral perfusion pressure with worsening of autoregulation, implying inadequate but identifiable individual perfusion. Standardized induction of hypertension resulted in cerebral perfusion pressures that exceeded individual optimal cerebral perfusion pressure in delayed cerebral ischemia patients. The potential benefit of individual blood pressure management guided by autoregulation-based optimal cerebral perfusion pressure should be explored in future intervention studies

    Quantum corrections to the mass of the supersymmetric vortex

    Full text link
    We calculate quantum corrections to the mass of the vortex in N=2 supersymmetric abelian Higgs model in (2+1) dimensions. We put the system in a box and apply the zeta function regularization. The boundary conditions inevitably violate a part of the supersymmetries. Remaining supersymmetry is however enough to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A non-zero correction to the mass of the vortex comes from finite renormalization of couplings.Comment: Latex, 18 pp; v2 reference added; v3 minor change

    CP violation in Bd,s→l+l−B_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0→l+l−B^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bd→l+l−B_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=μl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10−310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0→l+l−(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
    • …
    corecore