4 research outputs found

    Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter

    Get PDF
    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K(+) inhibits Na(+)-dependent binding of substrate to LeuT, promotes an outward-closed/inward-facing conformation of the transporter and increases uptake. To assess K(+)-induced conformational dynamics we measured fluorescence resonance energy transfer (FRET) between fluorescein site-specifically attached to inserted cysteines and Ni(2+) bound to engineered di-histidine motifs (transition metal ion FRET). The measurements supported K(+)-induced closure of the transporter to the outside, which was counteracted by Na(+) and substrate. Promoting an outward-open conformation of LeuT by mutation abolished the K(+)-effect. The K(+)-effect depended on an intact Na1 site and mutating the Na2 site potentiated K(+) binding by facilitating transition to the inward-facing state. The data reveal an unrecognized ability of K(+) to regulate the LeuT transport cycle

    Pharmacological Characterization of Purified Full-Length Dopamine Transporter from <i>Drosophila melanogaster</i>

    No full text
    The dopamine transporter (DAT) is a member of the neurotransmitter:sodium symporter (NSS) family, mediating the sodium-driven reuptake of dopamine from the extracellular space thereby terminating dopaminergic neurotransmission. Our current structural understanding of DAT is derived from the resolutions of DAT from Drosophila melanogaster (dDAT). Despite extensive structural studies of purified dDAT in complex with a variety of antidepressants, psychostimulants and its endogenous substrate, dopamine, the molecular pharmacology of purified, full length dDAT is yet to be elucidated. In this study, we functionally characterized purified, full length dDAT in detergent micelles using radioligand binding with the scintillation proximity assay. We elucidate the consequences of Na+ and Cl− binding on [3H]nisoxetine affinity and use this to evaluate the binding profiles of substrates and inhibitors to the transporter. Additionally, the technique allowed us to directly determine a equilibrium binding affinity (Kd) for [3H]dopamine to dDAT. To compare with a more native system, the affinities of specified monoamines and inhibitors was determined on dDAT, human DAT and human norepinephrine transporter expressed in COS-7 cells. With our gathered data, we established a pharmacological profile for purified, full length dDAT that will be useful for subsequent biophysical studies using dDAT as model protein for the mammalian NSS family of proteins

    Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu(290)

    No full text
    Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K(+) ions from the intracellular side toward the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na(+). Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K(+) binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both Na(+) ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na(+) in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu(290), either charged or neutral, point to the Glu(290) protonation state as a main determinant in the structural reconfiguration of the extracellular vestibule of LeuT in which a “water gate” opens through coordinated motions of residues Leu(25), Tyr(108), and Phe(253). The resulting water channel enables the binding/dissociation of the Na(+) and K(+) ions that are prevalent, respectively, in the extracellular and intracellular environments
    corecore