42,585 research outputs found

    Mission Drift of large MFIs?

    Get PDF
    Since the Mexican Microfinance Institution (MFI) Compartamos went public in 2007 – whereby promoting NGOs and private investors earned about USD 425 million – leading journals and magazines have repeatedly run rather sceptical articles about microfinance. They are mostly inspired by antagonists of MFIs growing into market driven enterprises. This antagonism has been blended with contemplation about assumed “subprime issues” of microfinance. However, the sector showed a steady performance, different from most other segments of the financial sector. The unholy blend of these two lines of thought risks to create an unwarranted image of microfinance.Microfinance; Mission Drift; Subprime; Sustainability

    Summary of working group g: beam material interaction

    Full text link
    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo - mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.Comment: 3 pp. 46th ICFA Advanced Beam Dynamics Workshop HB2010, Sep 27 - Oct 1 2010: Morschach, Switzerlan

    Quantum effects with an X-ray free electron laser

    Full text link
    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an XFEL facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 TW-peak XFEL laser with photon energy 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.Comment: 4 pages, LaTeX2

    Evidence for Triplet Superconductivity in a Superconductor-Ferromagnet Spin Valve

    Full text link
    We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoO_x/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passing from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.Comment: 5 pages (including 4 EPS figures). Version 2: final version as published in PR

    Higgs Boson Discovery Potential of LHC in the Channel ppγγ+jetpp \to\gamma\gamma+jet

    Full text link
    We discuss the SM Higgs discovery potential of LHC in the reaction ppH+jetγγ+jetpp\to H+ jet\to\gamma\gamma+jet when the jet is observed at sufficiently high EtE_t to be reliably identified. We conclude that this channel gives promising discovery possibilities for the Higgs boson mass range 100-140 GeV, during LHC operation at a low luminosity. With 30 fb1^{-1} of accumulated data and for MH=120M_H=120 GeV about 100 signal events could be observed with the number of background events larger by a factor of 2 only, showing a signal significance S/B7S/\sqrt{B}\sim 7. We use the difference of distributions in the partonic subprocess energy s^\sqrt{\hat s} for the signal and background for a better separation of the signal.Comment: 15 pages including 6 figures, LaTeX, use epsfig.sty. To appear in Phys.Lett.B. In this replacement minor LaTeX improvements are mad

    Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure

    Full text link
    Superconductor/ferromagnet (S/F) proximity effect theory predicts that the superconducting critical temperature of the F1/F2/S or F1/S/F2 trilayers for the parallel orientation of the F1 and F2 magnetizations is smaller than for the antiparallel one. This suggests a possibility of a controlled switching between the superconducting and normal states in the S layer. Here, using the spin switch design F1/F2/S theoretically proposed by Oh et al. [Appl. Phys. Lett. 71, 2376 (1997)], that comprises a ferromagnetic bilayer separated by a non-magnetic metallic spacer layer as a ferromagnetic component, and an ordinary superconductor as the second interface component, we have successfully realized a full spin switch effect for the superconducting current.Comment: 5 pages, 4 figure

    Nonparametric Modeling of Dynamic Functional Connectivity in fMRI Data

    Get PDF
    Dynamic functional connectivity (FC) has in recent years become a topic of interest in the neuroimaging community. Several models and methods exist for both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), and the results point towards the conclusion that FC exhibits dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a non-parametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted in Bayesian statistical modeling we use the predictive likelihood to investigate if the model can discriminate between a motor task and rest both within and across subjects. We further investigate what drives dynamic states using the model on the entire data collated across subjects and task/rest. We find that the number of states extracted are driven by subject variability and preprocessing differences while the individual states are almost purely defined by either task or rest. This questions how we in general interpret dynamic FC and points to the need for more research on what drives dynamic FC.Comment: 8 pages, 1 figure. Presented at the Machine Learning and Interpretation in Neuroimaging Workshop (MLINI-2015), 2015 (arXiv:1605.04435

    Manifestation of New Interference Effects in Superconductor/Ferromagnet Spin Valve

    Full text link
    Superconductor/ferromagnet (S/F) spin valve effect theories based on the S/F proximity phenomenon assume that the superconducting transition temperature Tc of F1/F2/S or F1/S/F2 trilayers for parallel magnetizations of the F1- and F2-layers (TcP) are smaller than for the antiparallel orientations (TcAP). Here, we report for CoOx/Fe1/Cu/Fe2/In multilayered systems with varying Fe2-layer thickness the sign-changing oscillating behavior of the spin valve effect \Delta Tc=TcAP-TcP. Our measurements revealed the full direct spin valve effect with TcAP>TcP for Fe2-layer thickness dFe2<1 nm and the full inverse (TcAP=1 nm. Interference of Cooper pair wave functions reflected from both surfaces of the Fe2-layer appear as the most probable reason for the observed behavior of \Delta Tc.Comment: Accepted for publication in PR

    Hybrid Deterministic-Stochastic Methods for Data Fitting

    Full text link
    Many structured data-fitting applications require the solution of an optimization problem involving a sum over a potentially large number of measurements. Incremental gradient algorithms offer inexpensive iterations by sampling a subset of the terms in the sum. These methods can make great progress initially, but often slow as they approach a solution. In contrast, full-gradient methods achieve steady convergence at the expense of evaluating the full objective and gradient on each iteration. We explore hybrid methods that exhibit the benefits of both approaches. Rate-of-convergence analysis shows that by controlling the sample size in an incremental gradient algorithm, it is possible to maintain the steady convergence rates of full-gradient methods. We detail a practical quasi-Newton implementation based on this approach. Numerical experiments illustrate its potential benefits.Comment: 26 pages. Revised proofs of Theorems 2.6 and 3.1, results unchange
    corecore