2,232 research outputs found
Soluble levels of receptor for advanced glycation endproducts and dysfunctional high-density lipoprotein in persons infected with human immunodeficiency virus: ACTG NWCS332.
The role of high-density lipoprotein (HDL) function and advanced glycation end products (AGEs) in HIV-related atherosclerotic cardiovascular disease (CVD) is unclear. Both glycation and oxidation (HDLox) are major modifications of HDL that can alter its composition and function. Therefore, we explored the longitudinal association of HDLox with progression of glycation, as evaluated by measurement of circulating forms of receptor for AGE that predict morbidity (soluble Receptors for Advanced Glycation Endproducts [sRAGE], endogenous secretory Receptors for Advanced Glycation Endproducts [esRAGE]), in people with HIV-1 (PWH; HIV-1) and uninfected (HIV-1) individuals.We retrospectively assessed if levels of plasma sRAGE and esRAGE and HDL function (reduced antioxidant function is associated with increased HDL lipid hydroperoxide content; HDLox) in a subset of participants (n = 80) from a prospective 3-year study (AIDS Clinical Trials Group A5078). Primary outcomes were baseline and yearly rates of change over 96 of 144 weeks (Δ) in HDLox in HIV-1 versus uninfected HIV-1 controls (noted as HIV-1).Higher baseline levels of sRAGE in PWH on effective anti-retroviral therapy and with low CVD risk, but not in HIV-1 persons, were independently associated with higher HDLox. EsRAGE, but not sRAGE, had consistent inverse relationships with ΔHDLox in both HIV-1 and HIV-1 persons at baseline. In HIV-1 but not in HIV-1 persons, ΔHDLox had positive and inverse relationships with ΔRAGE and ΔesRAGE, respectively.Glycation and oxidation of HDL may contribute to impaired HDL function present in PWH
RAGE: Exacting a toll on the host in response to polymicrobial sepsis and Listeria monocytogenes
The receptor for advanced glycation endproducts (RAGE) has complex roles in the immune/inflammatory response. RAGE is expressed on monocytes/macrophages, T and B lymphocytes, and dendritic cells. Previous studies illustrated that homozygous RAGE-/- mice subjected to overwhelming bacterial sepsis displayed normal clearance of pathogenic bacteria and significantly increased survival. In this issue of Critical Care, Lutterloh and colleagues confirm these findings and provide evidence that blocking antibodies to RAGE afford similar protection in mice, even when administration of anti-RAGE is delayed by 24 hours. Furthermore, these authors illustrate that deletion of RAGE is remarkably protective in mice infected with the intracellular pathogen Listeria monocytogenes. In this Commentary, we consider these findings and propose possible mechanisms by which RAGE exacts a heavy toll on the host in response to polymicrobial sepsis and L. monocytogenes
Soluble RAGE: a hot new biomarker for the hot joint?
The receptor for advanced glycation endproducts (RAGE) interacts with distinct ligand families linked to the inflammatory response. Studies in animal models suggest that RAGE is upregulated in the inflamed joint and that blockade of the receptor, using a ligand decoy soluble form of RAGE (sRAGE), attenuates joint inflammation and expression of inflammatory and tissue-destructive mediators. In this issue of Arthritis Research & Therapy, Rille Pullerits and colleagues reported that plasma levels of sRAGE were reduced in subjects with rheumatoid arthritis compared with healthy controls or subjects with non-inflammatory joint disease. These findings suggest the possibility that levels of sRAGE might be a biomarker of inflammation. Not resolved by these studies, however, is the intriguing possibility that endogenously higher levels of sRAGE might be linked to a lower incidence of arthritis or to the extent of inflammation. Nevertheless, although 'cause or effect' relationships may not be established in this report, fascinating insights into RAGE, inflammation and human arthritis emerge from these studies
Recommended from our members
Controllable Expansion of Primary Cardiomyocytes by Reversible Immortalization
Cardiac tissue engineering will remain only a prospect unless large numbers of therapeutic cells can be provided, either from small samples of cardiac cells or from stem cell sources. In contrast to most adult cells, cardiomyocytes are terminally differentiated and cannot be expanded in culture. We explored the feasibility of enabling the in vitro expansion of primary neonatal rat cardiomyocytes by lentivector-mediated cell immortalization, and then reverting the phenotype of the expanded cells back to the cardiomyocyte state. Primary rat cardiomyocytes were transduced with simian virus 40 large T antigen (TAg), or with Bmi-1 followed by the human telomerase reverse transcriptase (hTERT) gene; the cells were expanded; and the transduced genes were removed by adenoviral vector expressing Cre recombinase. The TAg gene was more efficient in cell transduction than the Bmi-1/hTERT gene, based on the rate of cell proliferation. Immortalized cells exhibited the morphological features of dedifferentiation (increased vimentin expression, and reduced expression of troponin I and Nkx2.5) along with the continued expression of cardiac markers (α-actin, connexin-43, and calcium transients). After the immortalization was reversed, cells returned to their differentiated state. This strategy for controlled expansion of primary cardiomyocytes by gene transfer has potential for providing large amounts of a patient's own cardiomyocytes for cell therapy, and the cardiomyocytes derived by this method could be a useful cellular model by which to study cardiogenesis
Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products.
This is the published version. Copyright 1993 American Society for Clinical Investigation.Nonenzymatic glycation of proteins occurs at an accelerated rate in diabetes and can lead to the formation of advanced glycation end products of proteins (AGEs), which bind to mononuclear phagocytes (MPs) and induce chemotaxis. We have isolated two cell surface-associated binding proteins that mediate the interaction of AGEs with bovine endothelial cells. One of these proteins is a new member of the immunoglobulin superfamily of receptors (termed receptor for AGEs or RAGE); and the second is a lactoferrin-like polypeptide (LF-L). Using monospecific antibodies to these two AGE-binding proteins, we detected immunoreactive material on Western blots of detergent extracts from human MPs. Radioligand-binding studies demonstrated that antibody to the binding proteins blocked 125I-AGE-albumin binding and endocytosis by MPs. Chemotaxis of human MPs induced by soluble AGE-albumin was prevented in a dose-dependent manner by intact antibodies raised to the AGE-binding proteins, F(ab')2 fragments of these antibodies and by soluble RAGE. When MP migration in response to N-formyl-Met-Leu-Phe was studied in a chemotaxis chamber with AGE-albumin adsorbed to the upper surface of the chamber membrane, movement of MPs to the lower compartment was decreased because of interaction of the glycated proteins with RAGE and LF-L on the cell surface. The capacity of AGEs to attract and retain MPs was shown by implanting polytetrafluoroethylene (PTFE) mesh impregnated with AGE-albumin into rats: within 4 d a florid mononuclear cell infiltrate was evident in contrast to the lack of a significant cellular response to PTFE with adsorbed native albumin. These data indicate that RAGE and LF-L have a central role in the interaction of AGEs with human mononuclear cells and that AGEs can serve as a nidus to attract MPs in vivo
A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis
Exquisite regulation of energy homeostasis protects from nutrient deprivation but causes metabolic dysfunction upon nutrient excess. In human and murine adipose tissue, the accumulation of ligands of the receptor for advanced glycation end products (RAGE) accompanies obesity, implicating this receptor in energy metabolism. Here, we demonstrate that mice bearing global- or adipocyte-specific deletion of Ager, the gene encoding RAGE, display superior metabolic recovery after fasting, a cold challenge, or high-fat feeding. The RAGE-dependent mechanisms were traced to suppression of protein kinase A (PKA)-mediated phosphorylation of its key targets, hormone-sensitive lipase and p38 mitogen-activated protein kinase, upon beta-adrenergic receptor stimulation-processes that dampen the expression and activity of uncoupling protein 1 (UCP1) and thermogenic programs. This work identifies the innate role of RAGE as a key node in the immunometabolic networks that control responses to nutrient supply and cold challenges, and it unveils opportunities to harness energy expenditure in environmental and metabolic stress
β2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts
β2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. β2-microglobulin amyloidosis (Aβ2m) is a serious complication for patients undergoing long-term dialysis. β2-microglobulin modified with advanced glycation end products (β2m-AGE) is a major component of the amyloid in Aβ2m. It is not completely understood whether β2m-AGE plays an active role in the pathogenesis of Aβ2m, or if its presence is a secondary event of the disease. β2-microglobulin amyloid is mainly located in tendon and osteo-articular structures that are rich in collagen, and local fibroblasts constitute the principal cell population in the synthesis and metabolism of collagen. Recent identification of AGE binding proteins on human fibroblasts lead to the hypothesis that the fibroblast may be a target for the biological action of β2m-AGE. The present study demonstrated that two human fibroblast cell lines exhibited a decrease in procollagen type I mRNA and type I collagen synthesis after exposure to β2m-AGE for 72 hours. Similar results were observed using AGE-modified albumin. Antibody against the RAGE, the receptor for AGE, attenuated this decrease in synthesis, indicating that the response was partially mediated by RAGE. In addition, antibody against epidermal growth factor (EGF) attenuated the decrease in type I procollagen mRNA and type I collagen induced by β2m-AGE, suggesting that EGF acts as an intermediate factor. These findings support the hypothesis that β2m-AGE actively participates in connective tissue and bone remodeling via a pathway involving fibroblast RAGE, and at least one interposed mediator, the growth factor EGF
Meaningful outcomes for children and their caregivers attending a paediatric brain centre
Aim: To identify meaningful outcomes of children and their caregivers attending a paediatric brain centre. Method: We compiled a long list of outcomes of health and functioning of children with brain-related disorders such as cerebral palsy, spina bifida, (genetic) neurodevelopmental disorders, and acquired brain injury. We incorporated three perspectives: patients, health care professionals, and published outcome sets. An aggregated list was categorized using the International Classification of Functioning, Disability, and Health: Children and Youth version in a patient validation survey for children and parent-caregivers to prioritize outcomes. Outcomes were considered meaningful when ranked ‘very important’ by 70% or more of the participants. Results: We identified 104 outcomes from the three perspectives. After categorizing, 59 outcomes were included in the survey. Thirty-three surveys were completed by children (n = 4), caregivers (n = 24), and parent-caregivers together with their child (n = 5). Respondents prioritized 27 meaningful outcomes covering various aspects of health and functioning: emotional well-being, quality of life, mental and sensory functions, pain, physical health, and activities (communication, mobility, self-care, interpersonal relationships). Parent-caregiver concerns and environmental factors were newly identified outcomes. Interpretation: Children and parent-caregivers identified meaningful outcomes covering various aspects of health and functioning, including caregiver concerns and environmental factors. We propose including those in future outcome sets for children with neurodisability. What this paper adds: Outcomes that children with brain-related disorders and their parent-caregivers consider to be the most meaningful cover a wide range of aspects of functioning. Involving these children and their parent-caregivers resulted in the identification of important outcomes that were not covered by professionals and the literature. Parent-caregiver-related factors (coping, burden of care) and environmental factors (support, attitudes, and [health care] services) were identified as meaningful.</p
- …