3,594 research outputs found

    Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis

    Get PDF
    We consider the frequency domain form of proper orthogonal decomposition (POD) called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space-time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic tools in turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg-Landau equation and a turbulent jet

    Farmers\u27 business cooperation in Knox County, Tennessee

    Get PDF
    The purpose of this study is to analyze the successes and failures of rural cooperative organizations in Knox County, Tennessee. It is hoped that the information obtained will be helpful in showing the type of organization, method of management, and economic and agricultural conditions which contribute most to the success of farmers’ cooperatives in this county, and in other similar areas

    Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

    Full text link
    We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.Comment: AI/Stats 2015, 24 page

    Prospectus, April 4, 2007

    Get PDF
    https://spark.parkland.edu/prospectus_2007/1027/thumbnail.jp

    Jet-edge interaction tones

    Get PDF
    Motivated by the problem of jet-flap interaction noise, we study the tonal dynamics that occur when a sharp edge is placed in the hydrodynamic nearfield of an isothermal turbulent jet. We perform hydrodynamic and acoustic pressure measurements in order to characterise the tones as a function of Mach number and streamwise edge position. The distribution of spectral peaks observed, as a function of Mach number, cannot be explained using the usual edge-tone scenario, in which resonance is underpinned by coupling between downstream-travelling Kelvin-Helmholtz wavepackets and upstream-travelling sound waves. We show, rather, that the strongest tones are due to coupling between the former and upstream-travelling jet modes recently studied by Towne et al. (2017) and Schmidt et al. (2017). We also study the band-limited nature of the resonance, showing a high-frequency cut-off to be due to the frequency dependence of the upstream-travelling waves. At high Mach number these become evanescent above a certain frequency, whereas at low Mach number they become progressively trapped with increasing frequency, a consequence of which is their not being reflected in the nozzle plane. Additionally, a weaker, low-frequency, forced-resonance regime is identified that involves the same upstream travelling jet modes but that couple, in this instance, with downstream-travelling sound waves. It is suggested that the existence of two resonance regimes may be due to the non-modal nature of wavepacket dynamics at low-frequency.Comment: 21 pages, 15 figure

    Computing Motion Plans for Assembling Particles with Global Control

    Full text link
    We investigate motion planning algorithms for the assembly of shapes in the \emph{tilt model} in which unit-square tiles move in a grid world under the influence of uniform external forces and self-assemble according to certain rules. We provide several heuristics and experimental evaluation of their success rate, solution length, runtime, and memory consumption.Comment: 20 pages, 12 figure
    • …
    corecore