2,131 research outputs found

    Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming

    Get PDF
    Organic farmers look to the possibilities of growing neglected crops, such as the spring forms of hulled wheat – einkorn, emmer and spelt – for support in developing the organic farming system. In 2008, 169 landraces from the gene bank at the Crop Research Institute in Prague were tested on certifi ed organic plots. The experiment was aimed at fi nding suitable varieties for the organic farming system. In summary, our fi ndings show that einkorn (Triticum monococcum L.) and emmer wheat [Triticum dicoccum Schrank (Schuebl)] are resistant to powdery mildew and brown rust, spelt wheat (Triticum spelta L.) is less resistant to these two diseases, and the intermediate forms of bread wheat are very sensitive to such infestation. The varieties evaluated incline to lodging, as they have long and weak stems. Einkorn and emmer wheat have short and dense spikes and a low thousand grains weight, whereas spelt wheat has long and lax spikes. The level of the harvest index is low. Potentially useful varieties were found during the fi eld experiment and evaluation, and our future efforts will therefore focus on improving resistance to lodging and increasing the productivity of the spike

    Kondo effect in an integer-spin quantum dot

    Full text link
    The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechanism in a wide class of correlated electron systems. Control over single, localised spins has become relevant also in fabricated structures due to the rapid developments in nano-electronics. Experiments have already demonstrated artificial realisations of isolated magnetic impurities at metallic surfaces, nanometer-scale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here, we report an unexpected Kondo effect realised in a few-electron quantum dot containing singlet and triplet spin states whose energy difference can be tuned with a magnetic field. This effect occurs for an even number of electrons at the degeneracy between singlet and triplet states. The characteristic energy scale is found to be much larger than for the ordinary spin-1/2 case.Comment: 12 page

    Kondo physics in carbon nanotubes

    Full text link
    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far higher tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron number (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.Comment: 7 pages, pdf onl

    Quality Of Antenatal Care In Rural Southern Tanzania: A Reality Check.

    Get PDF
    Counselling on the danger signs of unpredictable obstetric complications and the appropriate management of such complications are crucial in reducing maternal mortality. The objectives of this study were to identify gaps in the provision of ANC services and knowledge of danger signs as well as the quality of care women receive in case of complications. The study took place in the Rufiji District of Tanzania in 2008 and was conducted in seven health facilities. The study used (1) observations from 63 antenatal care (ANC) sessions evaluated with an ANC checklist, (2) self-assessments of 11 Health workers, (3) interviews with 28 pregnant women and (4) follow-up of 12 women hospitalized for pregnancy-related conditions.Blood pressure measurements and abdominal examinations were common during ANC visits while urine testing for albumin or sugar or haemoglobin levels was rare which was often explained as due to a lack of supplies. The reasons for measuring blood pressure or abdominal examinations were usually not explained to the women. Only 15/28 (54%) women were able to mention at least one obstetric danger sign requiring medical attention. The outcomes of ten complicated cases were five stillbirths and three maternal complications. There was a considerable delay in first contact with a health professional or the start of timely interventions including checking vital signs, using a partograph, and detailed record keeping. Linking danger signs to clinical and laboratory examination results during ANC with the appropriate follow up and avoiding delays in emergency obstetric care are crucial to the delivery of coordinated, effective care interventions

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
    corecore