511 research outputs found

    Mesoscopic Fluctuations in Quantum Dots in the Kondo Regime

    Full text link
    Properties of the Kondo effect in quantum dots depend sensitively on the coupling parameters and so on the realization of the quantum dot -- the Kondo temperature itself becomes a mesoscopic quantity. Assuming chaotic dynamics in the dot, we use random matrix theory to calculate the distribution of both the Kondo temperature and the conductance in the Coulomb blockade regime. We study two experimentally relevant cases: leads with single channels and leads with many channels. In the single-channel case, the distribution of the conductance is very wide as TKT_K fluctuates on a logarithmic scale. As the number of channels increases, there is a slow crossover to a self-averaging regime.Comment: 4 pages, 3 figure

    Multi-parameter scaling of the Kondo effect in quantum dots with an even number of electrons

    Full text link
    We address a recent theoretical discrepancy concerning the Kondo effect in quantum dots with an even number of electrons where spin-singlet and -triplet states are nearly degenerate. We show that the discrepancy arises from the fact that the Kondo scaling involves many parameters, which makes the results depend on concrete microscopic models. We illustrate this by the scaling calculations of the Kondo temperature, TKT_K, as a function of the energy difference between the singlet and triplet states Δ\Delta. TK(Δ)T_K(\Delta) decreases with increasing Δ\Delta, showing a crossover from a power law with a universal exponent to that with a nonuniversal exponent. The crossover depends on the initial parameters of the model.Comment: 8 pages, 3 figure

    Flux-quantum-modulated Kondo conductance in a multielectron quantum dot

    Get PDF
    We investigate a lateral semiconductor quantum dot with a large number of electrons in the limit of strong coupling to the leads. A Kondo effect is observed and can be tuned in a perpendicular magnetic field. This Kondo effect does not exhibit Zeeman splitting. It shows a modulation with the periodicity of one flux quantum per dot area at low temperatures. The modulation leads to a novel, strikingly regular stripe pattern for a wide range in magnetic field and number of electrons.Comment: 4 pages, 5 figure

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure

    Nonequilibrium Kondo Effect in a Multi-level Quantum Dot near singlet-triplet transition

    Full text link
    The linear and nonlinear transport through a multi-level lateral quantum dot connected to two leads is investigated using a generalized finite-UU slave-boson mean field approach. For a two-level quantum dot, our calculation demonstrates a substantial conductance enhancement near the degeneracy point of the spin singlet and triplet states, a non-monotonic temperature-dependence of conductance and a sharp dip and nonzero bias maximum of the differential conductance. These agree well with recent experiment observations. This two-stage Kondo effect in an out-of-equilibrium situation is attributed to the interference between the two energy levels.Comment: 4 pages, 3 figure

    Kondo effect induced by a magnetic field

    Full text link
    We study peculiarities of transport through a Coulomb blockade system tuned to the vicinity of the spin transition in its ground state. Such transitions can be induced in practice by application of a magnetic field. Tunneling of electrons between the dot and leads mixes the states belonging to the ground state manifold of the dot. Remarkably, both the orbital and spin degrees of freedom of the electrons are engaged in the mixing at the singlet-triplet transition point. We present a model which provides an adequate theoretical description of recent experiments with semiconductor quantum dots and carbon nanotubes

    Fano Resonances in Electronic Transport through a Single Electron Transistor

    Full text link
    We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR

    G protein signaling-biased agonism at the k-opioid receptor is maintained in striatal neurons

    Get PDF
    Biased agonists of G protein-coupled receptors may present a means to refine receptor signaling in a way that separates side effects from therapeutic properties. Several studies have shown that agonists that activate the k-opioid receptor (KOR) in a manner that favors G protein coupling over b-Arrestin2 recruitment in cell culture may represent a means to treat pain and itch while avoiding sedation and dysphoria. Although it is attractive to speculate that the bias between G protein signaling and b-Arrestin2 recruitment is the reason for these divergent behaviors, little evidence has emerged to show that these signaling pathways diverge in the neuronal environment. We further explored the influence of cellular context on biased agonism at KOR ligand-directed signaling toward G protein pathways over b-Arrestin-dependent pathways and found that this bias persists in striatal neurons. These findings advance our understanding of how a G protein-biased agonist signal differs between cell lines and primary neurons, demonstrate that measuring [35S]GTPgS binding and the regulation of adenylyl cyclase activity are not necessarily orthogonal assays in cell lines, and emphasize the contributions of the environment to assessing biased agonism

    Singlet-triplet transition in a lateral quantum dot

    Full text link
    We study transport through a lateral quantum dot in the vicinity of the singlet-triplet transition in its ground state. This transition, being sharp in an isolated dot, is broadened to a crossover by the exchange interaction of the dot electrons with the conduction electrons in the leads. For a generic set of system's parameters, the linear conductance has a maximum in the crossover region. At zero temperature and magnetic field, the maximum is the strongest. It becomes less pronounced at finite Zeeman splitting, which leads to an increase of the background conductance and a decrease of the conductance in the maximum

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<ν<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot
    corecore