108 research outputs found

    A FACED lift for cerebral blood flow imaging

    Full text link
    ISSN:0027-8424ISSN:1091-649

    Robotic lobectomy: tips, pitfalls and troubleshooting

    Get PDF
    The robotic approach in thoracic surgery has rapidly gained popularity in recent years. As with the introduction of any new technology, this warrants not only adaptation of the operative technique itself, but also the evolution of appropriate troubleshooting strategies. A selected number of helpful tips and technical procedural manoeuvres have been compiled to prevent intraoperative problems, as well as to overcome challenging situations that can arise during robotic lobectomies. In robotic surgery, as opposed to open surgery or video-assisted thoracic surgery, these tips serve an important purpose for the operating surgeon, as well as the entire surgical team involved in the procedure. All the assembled recommendations have proved their effectiveness and have been successfully used by the authors in many procedures. Furthermore, these manoeuvres have been found to be of great importance in the training and proctoring of thoracic surgeons, fellows and residents (bed-side assistants). This guide of clearly arranged tips and troubleshooting strategies offers surgeons a useful tool to overcome difficult situations in robotic lobectomy and preferably improve the reproducibility and safety of their procedure

    In vitro characterization of a new composite material for biomedical applications and 3D (bio)printing

    Get PDF
    Study goal: The present project aims at evaluating the cytocompatibility and printability of a new composite material, based on a mixture of a new methacrylate-based monomer developed within a CTI project (18514.1 PFLS-LS) and glass-ceramic powder supplemented with co- and photo-initiators (patent in preparation). This study is the basis to demonstrate the suitability of the biomaterial, for biomedical applications, such as stent, orthopedic implants and hearing aid components, as well as for 3D (bio)printing Key findings: - Cultivation, proliferation and differentiation of three different human cell types were successfully established on composite material discs (1cm diameter, 1mm height). Biological activity was shown - The material is suitable for 3D (bio)printing, printing protocols were established - The new composite material is suitable for cell and tissue interaction in biomedical application

    The role of leptomeningeal collaterals in redistributing blood flow during stroke

    Full text link
    Leptomeningeal collaterals (LMCs) connect the main cerebral arteries and provide alternative pathways for blood flow during ischaemic stroke. This is beneficial for reducing infarct size and reperfusion success after treatment. However, a better understanding of how LMCs affect blood flow distribution is indispensable to improve therapeutic strategies. Here, we present a novel in silico approach that incorporates case-specific in vivo data into a computational model to simulate blood flow in large semi-realistic microvascular networks from two different mouse strains, characterised by having many and almost no LMCs between middle and anterior cerebral artery (MCA, ACA) territories. This framework is unique because our simulations are directly aligned with in vivo data. Moreover, it allows us to analyse perfusion characteristics quantitatively across all vessel types and for networks with no, few and many LMCs. We show that the occlusion of the MCA directly caused a redistribution of blood that was characterised by increased flow in LMCs. Interestingly, the improved perfusion of MCA-sided microvessels after dilating LMCs came at the cost of a reduced blood supply in other brain areas. This effect was enhanced in regions close to the watershed line and when the number of LMCs was increased. Additional dilations of surface and penetrating arteries after stroke improved perfusion across the entire vasculature and partially recovered flow in the obstructed region, especially in networks with many LMCs, which further underlines the role of LMCs during stroke

    The role of leptomeningeal collaterals in redistributing blood flow during stroke.

    Get PDF
    Leptomeningeal collaterals (LMCs) connect the main cerebral arteries and provide alternative pathways for blood flow during ischaemic stroke. This is beneficial for reducing infarct size and reperfusion success after treatment. However, a better understanding of how LMCs affect blood flow distribution is indispensable to improve therapeutic strategies. Here, we present a novel in silico approach that incorporates case-specific in vivo data into a computational model to simulate blood flow in large semi-realistic microvascular networks from two different mouse strains, characterised by having many and almost no LMCs between middle and anterior cerebral artery (MCA, ACA) territories. This framework is unique because our simulations are directly aligned with in vivo data. Moreover, it allows us to analyse perfusion characteristics quantitatively across all vessel types and for networks with no, few and many LMCs. We show that the occlusion of the MCA directly caused a redistribution of blood that was characterised by increased flow in LMCs. Interestingly, the improved perfusion of MCA-sided microvessels after dilating LMCs came at the cost of a reduced blood supply in other brain areas. This effect was enhanced in regions close to the watershed line and when the number of LMCs was increased. Additional dilations of surface and penetrating arteries after stroke improved perfusion across the entire vasculature and partially recovered flow in the obstructed region, especially in networks with many LMCs, which further underlines the role of LMCs during stroke

    Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure

    Full text link
    Deterioration of brain capillary flow and architecture is a hallmark of aging and dementia. It remains unclear how loss of brain pericytes in these conditions contributes to capillary dysfunction. Here, we conduct cause-and-effect studies by optically ablating pericytes in adult and aged mice in vivo. Focal pericyte loss induces capillary dilation without blood-brain barrier disruption. These abnormal dilations are exacerbated in the aged brain, and result in increased flow heterogeneity in capillary networks. A subset of affected capillaries experience reduced perfusion due to flow steal. Some capillaries stall in flow and regress, leading to loss of capillary connectivity. Remodeling of neighboring pericytes restores endothelial coverage and vascular tone within days. Pericyte remodeling is slower in the aged brain, resulting in regions of persistent capillary dilation. These findings link pericyte loss to disruption of capillary flow and structure. They also identify pericyte remodeling as a therapeutic target to preserve capillary flow dynamics

    EACTS expert consensus statement for surgical management of pleural empyema

    Get PDF
    Pleural infection is a frequent clinical condition. Prompt treatment has been shown to reduce hospital costs, morbidity and mortality. Recent advances in treatment have been variably implemented in clinical practice. This statement reviews the latest developments and concepts to improve clinical management and stimulate further research. The European Association for Cardio-Thoracic Surgery (EACTS) Thoracic Domain and the EACTS Pleural Diseases Working Group established a team of thoracic surgeons to produce a comprehensive review of available scientific evidence with the aim to cover all aspects of surgical practice related to its treatment, in particular focusing on: surgical treatment of empyema in adults; surgical treatment of empyema in children; and surgical treatment of post-pneumonectomy empyema (PPE). In the management of Stage 1 empyema, prompt pleural space chest tube drainage is required. In patients with Stage 2 or 3 empyema who are fit enough to undergo an operative procedure, there is a demonstrated benefit of surgical debridement or decortication [possibly by video-assisted thoracoscopic surgery (VATS)] over tube thoracostomy alone in terms of treatment success and reduction in hospital stay. In children, a primary operative approach is an effective management strategy, associated with a lower mortality rate and a reduction of tube thoracostomy duration, length of antibiotic therapy, reintervention rate and hospital stay. Intrapleural fibrinolytic therapy is a reasonable alternative to primary operative management. Uncomplicated PPE [without bronchopleural fistula (BPF)] can be effectively managed with minimally invasive techniques, including fenestration, pleural space irrigation and VATS debridement. PPE associated with BPF can be effectively managed with individualized open surgical techniques, including direct repair, myoplastic and thoracoplastic techniques. Intrathoracic vacuum-assisted closure may be considered as an adjunct to the standard treatment. The current literature cements the role of VATS in the management of pleural empyema, even if the choice of surgical approach relies on the individual surgeon's preferenc

    Species richness, functional traits and climate interactively affect tree survival in a large forest biodiversity experiment

    Full text link
    1. Tree survival affects forest biodiversity, structure and functioning. However, little is known about feedback effects of biodiversity on survival and its dependence on functional traits and interannual climatic variability. 2. With an individual-based dataset from a large subtropical forest biodiversity experiment, we evaluated how species richness, functional traits and time-dependent covariates affected annual tree survival rates from age 3–12 (years) after planting 39 species across a diversity gradient from 1 to 2, 4, 8 and 16 tree species. 3. We found that overall survival rates marginally increased with diversity at the plot level, with large variation among plots within diversity levels. Significant variation among species in survival responses to diversity and changes in these responses with age were related to species functional traits and climatic conditions. Generally, survival rates of conservative species (evergreen, late-successional species with thick leaves and high carbon to nitrogen ratio but low specific leaf area, leaf phosphorus and hydraulic conductivity) increased with diversity, age and yearly precipitation, whereas acquisitive species showed opposite responses. 4. Synthesis. Our results indicate that interactions between diversity, species functional traits and yearly climatic conditions can balance survival among species in diverse forests. Planting mixtures of species that differ in functional traits in afforestation projects may lead to a positive feedback loop where biodiversit

    Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment

    Full text link
    Extreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystem stability is therefore considered crucial for mitigating adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics, species-level population stability, and drought-tolerance traits relate to the stability of forest productivity along an experimentally manipulated species richness gradient ranging from 1 to 24 tree species. Tree species richness improved community stability by increasing asynchrony. That is, at higher species richness, interannual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was positively related to variation in stomatal control and resistance-acquisition strategies among species, but not to the community-weighted means of these trait syndromes. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of diverse, mixed-species forests to adapt to climate change

    Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks

    Full text link
    Addressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity on tree productivity, and how they are related to tree functional diversity and trophic feedbacks. We found that tree species diversity increased tree productivity via increased tree functional diversity, reduced soil fungal diversity, and marginally reduced herbivory. The effects of tree genetic diversity on productivity via functional diversity and soil fungal diversity were negative in monocultures but positive in the mixture of the four tree species tested. Given the complexity of interactions between species and genetic diversity, tree functional diversity and trophic feedbacks on productivity, we suggest that both tree species and genetic diversity should be considered in afforestation
    corecore