1,311 research outputs found
Localised edge states nucleate turbulence in extended plane Couette cells
We study the turbulence transition of plane Couette flow in large domains
where localised perturbations are observed to generate growing turbulent spots.
Extending previous studies on the boundary between laminar and turbulent
dynamics we determine invariant structures intermediate between laminar and
turbulent flow. In wide but short domains we find states that are localised in
spanwise direction, and in wide and long domains the states are also localised
in downstream direction. These localised states act as critical nuclei for the
transition to turbulence in spatially extended domains.Comment: 15 pages, 5 figure
On the frequency of N2H+ and N2D+
Context : Dynamical studies of prestellar cores search for small velocity
differences between different tracers. The highest radiation frequency
precision is therefore required for each of these species. Aims : We want to
adjust the frequency of the first three rotational transitions of N2H+ and N2D+
and extrapolate to the next three transitions. Methods : N2H+ and N2D+ are
compared to NH3 the frequency of which is more accurately known and which has
the advantage to be spatially coexistent with N2H+ and N2D+ in dark cloud
cores. With lines among the narrowests, and N2H+ and NH3 emitting region among
the largests, L183 is a good candidate to compare these species. Results : A
correction of ~10 kHz for the N2H+ (J:1-0) transition has been found (~0.03
km/s) and similar corrections, from a few m/s up to ~0.05 km/s are reported for
the other transitions (N2H+ J:3-2 and N2D+ J:1-0, J:2-1, and J:3-2) compared to
previous astronomical determinations. Einstein spontaneous decay coefficients
(Aul) are included
Index lesion contouring on prostate MRI for targeted MRI/US fusion biopsy - Evaluation of mismatch between radiologists and urologists
PURPOSE: Mistargeting of focal lesions due to inaccurate segmentations can lead to false-negative findings on MRI-guided targeted biopsies. The purpose of this retrospective study was to examine inter-reader agreement of prostate index lesion segmentations from actual biopsy data between urologists and radiologists.
METHOD: Consecutive patients undergoing transperineal MRI-targeted prostate biopsy for PI-RADS 3-5 lesions between January 2020 and December 2021 were included. Agreement between segmentations on T2w-images between urologists and radiologists was assessed with Dice similarity coefficient (DSC) and 95 % Hausdorff distance (95 % HD). Differences in similarity scores were compared using Wilcoxon test. Differences depending on lesion features (size, zonal location, PI-RADS scores, lesion distinctness) were tested with Mann-Whitney U test. Correlation with prostate signal-intensity homogeneity score (PSHS) and lesion size was tested with Spearman's rank correlation.
RESULTS: Ninety-three patients (mean age 64.9 ± 7.1y, median serum PSA 6.5 [4.33-10.00]) were included. Mean similarity scores were statistically significantly lower between urologists and radiologists compared to radiologists only (DSC 0.41 ± 0.24 vs. 0.59 ± 0.23, p < 0.01; 95 %HD 6.38 ± 5.45 mm vs. 4.47 ± 4.12 mm, p < 0.01). There was a moderate and strong positive correlation between DSC scores and lesion size for segmentations from urologists and radiologists (ρ = 0.331, p = 0.002) and radiologists only (ρ = 0.501, p < 0.001). Similarity scores were worse in lesions ≤ 10 mm while other lesion features did not significantly influence similarity scores.
CONCLUSION: There is significant mismatch of prostate index lesion segmentations between urologists and radiologists. Segmentation agreement positively correlates with lesion size. PI-RADS scores, zonal location, lesion distinctness, and PSHS show no significant impact on segmentation agreement. These findings could underpin benefits of perilesional biopsies
Patients with Chronic Obstructive Pulmonary Disease Walk with Altered Step Time and Step Width Variability as Compared with Healthy Control Subjects
Rationale: Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls.
Objectives: To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects.
Methods: Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV1/FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables.
Results: Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups.
Conclusions: Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD
Efficacy of a strategy to prevent neonatal early-onset group B streptococcal (GBS) sepsis
Background: Existing guidelines recommend different strategies to prevent early-onset neonatal GBS sepsis. In 1997, using our own data on incidence and risk factors, we established a new prevention strategy which includes GBS screening at 36 weeks' gestation and intrapartum antibiotic prophylaxis (IAP) in women with positive or unknown GBS colonization with at least one risk factor. The present study evaluates the efficacy of the new prevention strategy. Methods: Retrospective study of the incidence of early-onset GBS sepsis among all live births at the University Women's Hospital Basel between 1997 and 2002. Additional analysis of delivery and post partum period of all GBS sepsis cases, including GBS screening, risk factors during labor (prematurity, rupture of membranes (ROM) <12 h, intrapartum signs of infection), and IAP. Comparison of this group's characteristics G2 (9,385 live births, using the new strategy) with the previous group, G1 (1984-1993, 16,126 live births, without GBS screening or routine IAP) was performed. Results: The incidence of early-onset GBS sepsis was reduced from 1/1000 (G1) to 0.53/1000 (G2). We observed a significant reduction of overall intrapartum riskfactors in cases of GBS sepsis. Conclusion: This study suggests that our new prevention strategy is effective in reducing the incidence of early-onset GBS sepsis in neonates. In comparison, implementation of the CDC's prevention strategy might have prevented 2 additional cases in 9385 live births. However, this would have required treating a much larger number of pregnant women with IAP with consequential increasing costs, side effects and complication
Gait mechanics in patients with chronic obstructive pulmonary disease.
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest.
METHODS: Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used.
RESULTS: After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P \u3c 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98.
CONCLUSIONS: Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD
Contrast media kinetics in multiparametric magnetic resonance imaging before radical prostatectomy predicts the probability of postoperative incontinence.
PURPOSE To evaluate the role of preoperative multiparametric magnetic resonance imaging (MRI) as predictor of post-prostatectomy incontinence (PPI).
METHODS We analyzed patients who underwent robot-assisted radical prostatectomy for localized prostate cancer at our institution between July 2015 and April 2017. In these patients, we measured the perfusion quality of the pelvic floor with contrast media kinetics in the preoperative MRI of the prostate and compared the levator ani muscle (region of interest) to the surrounding pelvic muscle structures (reference). Prospectively collected questionnaires regarding urinary incontinence were then evaluated 1 year postoperatively. Outcomes were dichotomized into "continent" (ICIQ-Score = 0-5) and "incontinent" (ICIQ-Score ≥ 6). In each patient, we determined the perfusion ratio of the levator ani muscle divided by the surrounding pelvic muscle structures and compared them among the groups.
RESULTS Forty-two patients were included in the study (n = 22 in "continent", n = 20 in "incontinent" group). The median perfusion ratio from the continent group was significantly higher compared to the incontinent group (1.61 vs. 1.15; 95% CI 0.09-0.81, p = 0.015). The median perfusion ratio in "excellent" (ICIQ-Score = 0) was significantly higher than in "poor" (ICIQ-Score ≥ 11) outcomes (1.48 vs. 0.94; 95% CI 0.04-1.03, p = 0.036). Further, a higher perfusion ratio was negatively correlated with ICIQ-Score (r = - 0.33; 95% CI - 0.58 to 0.03; p = 0.031).
CONCLUSIONS Our data demonstrate a promising new strategy to predict PPI through the perfusion quality of pelvic muscle structures with contrast media kinetics. This may facilitate preoperative patient consulting and decision-making
Gait mechanics in patients with chronic obstructive pulmonary disease
Background
Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest. Methods
Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used. Results
After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P \u3c 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98. Conclusions
Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD
Resistivity scaling and critical dynamics of fully frustrated Josephson-junction arrays with on-site dissipation
We study the scaling behavior and critical dynamics of the resistive
transition in Josephson-junction arrays, at f=1/2 flux quantum per plaquette,
by numerical simulation of an on-site dissipation model for the dynamics. The
results are compared with recent simulations using the
resistively-shunted-junction model. For both models, we find that the
resistivity scaling and critical dynamics of the phases are well described by
the same critical temperature as for the chiral (vortex-lattice) transition,
with a power-law divergent correlation length. The behavior is consistent with
the single transition scenario, where phase and chiral variables order at the
same temperature, but with different dynamic exponents z for phase coherence
and chiral order.Comment: 17 pages, 13 figures, to appear in Phys. Rev.
Mutation of the Protein Kinase C Site in Borna Disease Virus Phosphoprotein Abrogates Viral Interference with Neuronal Signaling and Restores Normal Synaptic Activity
Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)–dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons
- …