100 research outputs found

    Plague risk in the western United States over seven decades of environmental change

    Get PDF
    After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs—with suitability increasing up to 40% in some places—and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts

    The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes

    Get PDF
    BACKGROUND: HIV-1 viruses are highly capable of mutating their proteins to escape the presentation of CTL epitopes in their current host. Upon transmission to another host, some escape mutations revert, but other remain stable in the virus sequence for at least several years. Depending on the rate of accumulation and reversion of escape mutations, HIV-1 could reach a high level of adaptation to the human population. Yusim et. al. hypothesized that the apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins could be an evolutionary signature left by large-scale adaptation of HIV-1 to its human/simian host. RESULTS: In this paper we quantified the distribution of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein sequences, the epitope distribution was indistinguishable from random. Similar percentages were found for HCV, Influenza and for three eukaryote proteomes (Human, Drosophila, Yeast). CONCLUSION: We conclude that CTL epitopes in HIV-1 are randomly distributed, and that this distribution is similar to the distribution of CTL epitopes in proteins from other proteomes. Therefore, the visually apparent clustering of CTL epitopes in epitope maps should not be interpreted as a signature of a past large-scale adaptation of HIV-1 to the human cellular immune response

    Climate-driven introduction of the Black Death and successive plague reintroductions into Europe

    Get PDF
    The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe

    Human ectoparasites and the spread of plague in Europe during the Second Pandemic

    Get PDF
    Plague, caused by the bacterium Yersinia pestis, can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14-19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas (Pulex irritans) or body lice (Pediculus humanus humanus), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346-1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats

    MidA is a putative methyltransferase that is required for mitochondrial complex I function

    Get PDF
    10 pĂĄginas, 6 figuras.-- et al.Dictyostelium and human MidA are homologous proteins that belong to a family of proteins of unknown function called DUF185. Using yeast two-hybrid screening and pull-down experiments, we showed that both proteins interact with the mitochondrial complex I subunit NDUFS2. Consistent with this, Dictyostelium cells lacking MidA showed a specific defect in complex I activity, and knockdown of human MidA in HEK293T cells resulted in reduced levels of assembled complex I. These results indicate a role for MidA in complex I assembly or stability. A structural bioinformatics analysis suggested the presence of a methyltransferase domain; this was further supported by site-directed mutagenesis of specific residues from the putative catalytic site. Interestingly, this complex I deficiency in a Dictyostelium midA- mutant causes a complex phenotypic outcome, which includes phototaxis and thermotaxis defects. We found that these aspects of the phenotype are mediated by a chronic activation of AMPK, revealing a possible role of AMPK signaling in complex I cytopathology.This work was supported by grants BMC2006-00394 and BMC2009-09050 to R.E. from the Spanish Ministerio de Ciencia e InnovaciĂłn; to P.R.F. from the Thyne Reid Memorial Trusts and the Australian Research Council; to A.V. and O.G. from the Spanish National Bioinformatics Institute (www.inab.org), a platform of Genome Spain; to R.G. from the Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI070167) and from the Comunidad de Madrid (GEN-0269/2006). S.C. is supported by a research contract from ConsejerĂ­a de EducaciĂłn de la Comunidad de Madrid y del Fondo Social Europeo (FSE).Peer Reviewe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Determinants of Sexual Network Structure and Their Impact on Cumulative Network Measures

    Get PDF
    There are four major quantities that are measured in sexual behavior surveys that are thought to be especially relevant for the performance of sexual network models in terms of disease transmission. These are (i) the cumulative distribution of lifetime number of partners, (ii) the distribution of partnership durations, (iii) the distribution of gap lengths between partnerships, and (iv) the number of recent partners. Fitting a network model to these quantities as measured in sexual behavior surveys is expected to result in a good description of Chlamydia trachomatis transmission in terms of the heterogeneity of the distribution of infection in the population. Here we present a simulation model of a sexual contact network, in which we explored the role of behavioral heterogeneity of simulated individuals on the ability of the model to reproduce population-level sexual survey data from the Netherlands and UK. We find that a high level of heterogeneity in the ability of individuals to acquire and maintain (additional) partners strongly facilitates the ability of the model to accurately simulate the powerlaw-like distribution of the lifetime number of partners, and the age at which these partnerships were accumulated, as surveyed in actual sexual contact networks. Other sexual network features, such as the gap length between partnerships and the partnership duration, could–at the current level of detail of sexual survey data against which they were compared–be accurately modeled by a constant value (for transitional concurrency) and by exponential distributions (for partnership duration). Furthermore, we observe that epidemiological measures on diseas
    • 

    corecore