28 research outputs found

    Expanding social mobile games beyond the device screen

    Get PDF
    Emerging pervasive games use sensors, graphics and networking technologies to provide immersive game experiences integrated with the real world. Existing pervasive games commonly rely on a device screen for providing game-related information, while overlooking opportunities to include new types of contextual interactions like jumping, a punching gesture, or even voice to be used as game inputs. We present the design of Spellbound, a physical mobile team-based game, to help contribute to our understanding of how we can design pervasive games that aim to nurture a spirit of togetherness. We also briefly touch upon how togetherness and playfulness can transform physical movement into a desirable activity in the user evaluation section. Spellbound is an outdoor pervasive team-based physical game. It takes advantage of the above-mentioned opportunities and integrates real-world actions like jumping and spinning with a virtual world. It also replaces touch-based input with voice interaction and provides glanceable and haptic feedback using custom hardware in the true spirit of social play characteristic of traditional children’s games. We believe Spellbound is a form of digital outdoor gaming that anchors enjoyment on physical action, social interaction, and tangible feedback. Spellbound was well received in user evaluation playtests which confirmed that the main design objective of enhancing a sense of togetherness was largely met

    NailO: Fingernails as an Input Surface

    Get PDF
    We present NailO, a nail-mounted gestural input surface. Using capacitive sensing on printed electrodes, the interface can distinguish on-nail finger swipe gestures with high accuracy (>92%). NailO works in real-time: we miniaturized the system to fit on the fingernail, while wirelessly transmitting the sensor data to a mobile phone or PC. NailO allows one-handed and always-available input, while being unobtrusive and discrete. Inspired by commercial nail stickers, the device blends into the user's body, is customizable, fashionable and even removable. We show example applications of using the device as a remote controller when hands are busy and using the system to increase the input space of mobile phones

    Therapeutic Targeting of ATP7B in Ovarian Carcinoma.

    Get PDF
    PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models. EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis. CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance

    Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Get PDF
    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems.Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.We thank the U.S. National Science Foundation for supporting data collection at Yahtse Glacier through grant EAR-0810313. T.C.B. was substantially supported by a postdoctoral fellowship from the University of Texas Institute for Geophysics. J.M.A. was supported by Alaska NASA EPSCoR Program (NNX13AB28A). S.O. was supported by the U.S. Geological Survey Climate and Land Use Change Mission and the U.S. Department of Interior Alaska Climate Science Center. Seismic instrumentationwas provided by the PASSCAL polar program of the Incorporated Research Institutions for Seismology (IRIS). Jamie Bradshaw and Marci Beitch assisted in the Mendenhall Glacier data collection effort. Two anonymous reviewers helped to improve the manuscript. Seismic data used in this study are archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC, http://www.iris.edu/dms/nodes/dmc/). Stream gaging data for the Mendenhall River and Nugget Creek are available though http://waterdata.usgs.gov/ak/nwis/dv/?site_no=15052500 and http://waterdata.usgs.gov/ak/nwis/dv/?site_no=15052495. Any additional data may be obtained from T.C.B. ([email protected]). Use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The Editor thanks Gordon Hamilton and an anonymous reviewer for their assistance in evaluating this paper.Ye

    Synthetic Speech for Real Time Direction-Giving

    No full text
    The Back Seat Driver is a researc

    Are We There Yet? User-Centered Temporal Awareness

    No full text
    It's not unreasonable to think that the technologies we use in our daily lives could help us make these sorts of decisions. For example, analysis of computer usage patterns can reveal our probable availability to colleagues. But, even better, it should be possible for devices to make some of these decisions for us while still leaving us with a comfortable level of control. We refer to such systems as exhibiting temporal awareness. One way to realize temporally aware computing in everyday use is via wearable devices. Such devices could collect time-related information from the items and environments we interact with and create a personal temporal model. They could then use this information to change our behavior.An example of temporal awareness in action, the AreWeThereYet? Player is a digital audio player that can compose a program of audio media likely to fit within the user's available listening time. AWTY estimates this time using the listener's current location and predicted destination as well as some knowledge of previous journeys

    Certified by:

    No full text
    How many times have you gone to the grocery store but left your shopping list on the refrigerator door? Wouldn't it be more efficient to have a reminder to buy groceries and the shopping list delivered to you when you were in the vicinity of the store? How many times have you suddenly thought of something you must do or have just had a great idea that you want to write down, or record, for future reference? Wouldn't it be useful to record that thought and be reminded of it when in the relevant place and time? Information delivery utopia would be to receive the exact amount of data we need (no more, no less), when and where we need it, and in a gratifying format, for example, in a pleasant voice or well-structured text. Although we are still far away from this goal, a partial solution to the information overload is to create systems which deliver timely information when the user is in the relevant context. This thesis describes comMotion, a context-aware communication system for a mobile or wearable computing platform. A behaviour-learning agent automatically learns the salient locations in the user's life. Once these place
    corecore