1,203 research outputs found

    Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue

    Full text link
    We have measured details of the quasi one-dimensional Fermi-surface sections in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue using angle-dependent millimetre-wave techniques. There are significant differences in the corrugations of the Fermi surfaces in the deuterated and undeuterated salts. We suggest that this is important in understanding the inverse isotope effect, where the superconducting transition temperature rises on deuteration. The data support models for superconductivity which invoke electron-electron interactions depending on the topological properties of the Fermi surface

    Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

    Full text link
    Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions

    Empiric Models of the Earth's Free Core Nutation

    Full text link
    Free core nutation (FCN) is the main factor that limits the accuracy of the modeling of the motion of Earth's rotational axis in the celestial coordinate system. Several FCN models have been proposed. A comparative analysis is made of the known models including the model proposed by the author. The use of the FCN model is shown to substantially increase the accuracy of the modeling of Earth's rotation. Furthermore, the FCN component extracted from the observed motion of Earth's rotational axis is an important source for the study of the shape and rotation of the Earth's core. A comparison of different FCN models has shown that the proposed model is better than other models if used to extract the geophysical signal (the amplitude and phase of FCN) from observational data.Comment: 8 pages, 3 figures; minor update of the journal published versio
    corecore