56 research outputs found

    Infrared Spectroscopy of Trapped Gases in Metal-Organic Frameworks

    Get PDF
    There are a range of environmental and industrial applications to capturing carbon dioxide from gas mixtures. Currently, materials being used in these applications bind carbon dioxide too strongly for practical purposes, such that they require large amounts of energy to be regenerated for reuse. Highly porous materials called metal-organic frameworks (MOFs) could serve much more effectively as carbon-capturing materials, as they suck up large amounts of carbon dioxide gas at pressures and temperatures that are nearly ideal for carbon-capture applications. Moreover, they require much less energy than current materials to release the carbon dioxide and be regenerated. Additionally, many different structures can be created fairly easily, so scientists are on the hunt for the ideal carbon-capturing MOF. In this thesis we study Mg-MOF-74, a particularly promising metal-organic framework material for separating carbon dioxide from gas mixtures. We use infrared spectroscopy to probe the interactions between the Mg-MOF-74 host and both carbon dioxide and methane. By shining infrared radiation on Mg-MOF-74 with gases trapped in it and looking at which frequencies of radiation are absorbed by the bound gases, we can learn about the binding nature of the framework. This in turn helps us to better understand the properties are are preferable in metal organic frameworks, and will aid chemists in fabricating new structures that are ideal for carbon-capture and other applications

    Infrared Spectroscopy of Trapped Gases in Metal-Organic Frameworks

    Get PDF
    There are a range of environmental and industrial applications to capturing carbon dioxide from gas mixtures. Currently, materials being used in these applications bind carbon dioxide too strongly for practical purposes, such that they require large amounts of energy to be regenerated for reuse. Highly porous materials called metal-organic frameworks (MOFs) could serve much more effectively as carbon-capturing materials, as they suck up large amounts of carbon dioxide gas at pressures and temperatures that are nearly ideal for carbon-capture applications. Moreover, they require much less energy than current materials to release the carbon dioxide and be regenerated. Additionally, many different structures can be created fairly easily, so scientists are on the hunt for the ideal carbon-capturing MOF. In this thesis we study Mg-MOF-74, a particularly promising metal-organic framework material for separating carbon dioxide from gas mixtures. We use infrared spectroscopy to probe the interactions between the Mg-MOF-74 host and both carbon dioxide and methane. By shining infrared radiation on Mg-MOF-74 with gases trapped in it and looking at which frequencies of radiation are absorbed by the bound gases, we can learn about the binding nature of the framework. This in turn helps us to better understand the properties are are preferable in metal organic frameworks, and will aid chemists in fabricating new structures that are ideal for carbon-capture and other applications

    Simultaneous Broadband Vector Magnetometry Using Solid-State Spins

    Full text link
    We demonstrate a vector magnetometer that simultaneously measures all Cartesian components of a dynamic magnetic field using an ensemble of nitrogen-vacancy (NV) centers in a single-crystal diamond. Optical NV-diamond measurements provide high-sensitivity, broadband magnetometry under ambient or extreme physical conditions; and the fixed crystallographic axes inherent to this solid-state system enable vector sensing free from heading errors. In the present device, multi-channel lock-in detection extracts the magnetic-field-dependent spin resonance shifts of NVs oriented along all four tetrahedral diamond axes from the optical signal measured on a single detector. The sensor operates from near DC up to a 12.512.5 kHz measurement bandwidth; and simultaneously achieves  ⁣50\sim\!50 pT/Hz\sqrt{\text{Hz}} magnetic field sensitivity for each Cartesian component, which is to date the highest demonstrated sensitivity of a full vector magnetometer employing solid-state spins. Compared to optimized devices interrogating the four NV orientations sequentially, the simultaneous vector magnetometer enables a 4×4\times measurement speedup. This technique can be extended to pulsed-type sensing protocols and parallel wide-field magnetic imaging.Comment: 13 pages, 5 figures, 1 table, Supplemental Material included as ancillary fil

    Sensitivity Optimization for NV-Diamond Magnetometry

    Full text link
    Solid-state spin systems including nitrogen-vacancy (NV) centers in diamond constitute an increasingly favored quantum sensing platform. However, present NV ensemble devices exhibit sensitivities orders of magnitude away from theoretical limits. The sensitivity shortfall both handicaps existing implementations and curtails the envisioned application space. This review analyzes present and proposed approaches to enhance the sensitivity of broadband ensemble-NV-diamond magnetometers. Improvements to the spin dephasing time, the readout fidelity, and the host diamond material properties are identified as the most promising avenues and are investigated extensively. Our analysis of sensitivity optimization establishes a foundation to stimulate development of new techniques for enhancing solid-state sensor performance.Comment: 73 pages, 36 figures, 17 table

    Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control

    Get PDF
    Quantum spin dephasing is caused by inhomogeneous coupling to the environment, with resulting limits to the measurement time and precision of spin-based sensors. The effects of spin dephasing can be especially pernicious for dense ensembles of electronic spins in the solid-state, such as for nitrogen-vacancy (NV) color centers in diamond. We report the use of two complementary techniques, spin bath control and double quantum coherence, to enhance the inhomogeneous spin dephasing time (T2T_2^*) for NV ensembles by more than an order of magnitude. In combination, these quantum control techniques (i) eliminate the effects of the dominant NV spin ensemble dephasing mechanisms, including crystal strain gradients and dipolar interactions with paramagnetic bath spins, and (ii) increase the effective NV gyromagnetic ratio by a factor of two. Applied independently, spin bath control and double quantum coherence elucidate the sources of spin dephasing over a wide range of NV and spin bath concentrations. These results demonstrate the longest reported T2T_2^* in a solid-state electronic spin ensemble at room temperature, and outline a path towards NV-diamond magnetometers with broadband femtotesla sensitivity.Comment: PRX versio

    Quantum Diamond Microscope for Dynamic Imaging of Magnetic Fields

    Full text link
    Wide-field imaging of magnetic signals using ensembles of nitrogen-vacancy (NV) centers in diamond has garnered increasing interest due to its combination of micron-scale resolution, millimeter-scale field of view, and compatibility with diverse samples from across the physical and life sciences. Recently, wide-field NV magnetic imaging based on the Ramsey protocol has achieved uniform and enhanced sensitivity compared to conventional measurements. Here, we integrate the Ramsey-based protocol with spin-bath driving to extend the NV spin dephasing time and improve magnetic sensitivity. We also employ a high-speed camera to enable dynamic wide-field magnetic imaging. We benchmark the utility of this quantum diamond microscope (QDM) by imaging magnetic fields produced from a fabricated wire phantom. Over a 270×270μm270\times270 \hspace{0.08333em} \mu\mathrm{m}2^2 field of view, a median per-pixel magnetic sensitivity of 4.1(1)nT4.1(1)\hspace{0.08333em}\mathrm{nT}/Hz/\sqrt{\mathrm{Hz}} is realized with a spatial resolution 10μm\lesssim\hspace{0.08333em}10\hspace{0.08333em}\mu\mathrm{m} and sub-millisecond temporal resolution. Importantly, the spatial magnetic noise floor can be reduced to the picotesla scale by time-averaging and signal modulation, which enables imaging of a magnetic-field pattern with a peak-to-peak amplitude difference of about 300pT300\hspace{0.08333em}\mathrm{pT}. Finally, we discuss potential new applications of this dynamic QDM in studying biomineralization and electrically-active cells.Comment: 18 Pages, 13 figure

    Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis

    Full text link
    Abstract Background The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease. Results We monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA. Conclusions The microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.http://deepblue.lib.umich.edu/bitstream/2027.42/112442/1/40168_2012_Article_10.pd
    corecore