381 research outputs found

    Studies of radiative transfer in planetary atmospheres

    Get PDF
    The research emphasis during the period of this report has been on radio observations of comets, related to the International Halley Watch. Observations of the 18 cm lambda-doublet of OH have been carried out monthly. Both of the 1667 and 1665 MHz lines have been repeatedly detected for Comets Halley, Giacobini-Zinner, Thiele, and Hartley-Good. The first astronomical detection of the weak satellite line at 1720 MHz was made for P/Halley. These data promise to supply the highest signal-to-noise-ratio data over an extended period ever obtained for cometary radio observations. Analysis will provide gas production rates as a function of heliocentric distance and allow for detailed comparisons with the OH excitation model involving ultraviolet pumping. In the case of Halley, the lines appear quite symmetric, usually being centered within 0.1 km/s with respect to the nominal nuclear velocity. Line widths have been typically within 10% of 2 km/s. There is thus little evidence for asymmetric emission in the data obtained to date. It seems likely that non-steady-state models of the coma will be required to interpret the data. Evidence for significant departures from the LTE hyperfine ratios was found for Comet Giacobini-Zinner. Smaller, but nonetheless significant, deviations have been found for Comet Halley

    Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula

    Get PDF
    The first interstellar hydrocarbon ring, cyclopropenylidene (C3H2) is being studied. Both a survey of galactic sources in several C3H2 transitions and a more detailed study of a subset of these sources are under way. In the latter category is a study of the nearby cold dark cloud TMC-1, which is a potential formation site for solar type stars. A spectra is shown of seven rotational transitions which have been observed at the Five College Radio Astronomy Observatory. Three of these were detected for the first time in any astronomical source: the 3 sub 30 to 2 sub 21 transition at 216 GHz, the 2 sub 21 to 1 sub 10 transition at 122 GHz, and the 1 sub 11 to 0 sub 00 transition at 52 GHz. From the data it is apparent that C3H2 is quite spacially extended in typical interstellar molecular clouds, and that at least in TMC-1 it is one of the most abundant organic molecules

    Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula

    Get PDF
    Two additional hyperfine components of the interstellar radical C3H were detected. In addition, methanol was discovered in interstellar clouds. The abundance of HCCN and various chemical isomers in molecular clouds was investigated

    Studies of radiative transfer in planetary atmospheres

    Get PDF
    Progress is reported in modeling cometary emission in the 18-cm OH transition with specific application and predictions for Comet Halley. Radiative transfer is also being studied in rough and porous media. The kinematics of the cold, dark interstellar cloud Li34N were examined, and CO monitoring of Venus and Mars continues. Analysis of 3.4 mm maps of the lunar surface shows thermal anomalies associated with such surface features as the Crater Copernicus, Mare Imbrium, Mare Nubium, Mare Serenitatis, and Mare Tranquillatis

    Studies of radiative transfer in planetary atmospheres

    Get PDF
    Schloerb and Claussen continued their analysis of the very high quality data set obtained on the 18 centimeter OH line from the Comet P/Halley with the NRAO 43 meter antenna. The high spectral resolution (0.22 km/sec) and high signal-to-noise of the OH spectra make them ideal for the study of kinematics in the coma. Synthetic profiles were initiated for comparison with the data. A vectorial model was developed using the Monte Carlo techniques originated by Combi and Delsemme. Analysis of the millimeter wavelength observations of HCN emission from P/Halley obtained throughout much of the recent apparition were continued using the University of Massachusetts 14 millimeter-wavelength (FCRAO) antenna. A detailed analysis of the HCN lineshpaes was performed over the last six months. The excitation of HCN in the coma was studied to obtain a detailed match to the observed spectra. The passive millimeter wave radiometer was used to probe the physical and chemical nature of comets from spacecraft. Work was continued on an improved theory of radiative transfer for rough and porous surfaces, such as the regoliths of satellites, asteroids, and comets

    CO mapping of the Orion molecular cloud: The influence of star formation on cloud structure

    Get PDF
    Regions of massive star formation have long been believed to have a profound influence on the structure of their surrounding molecular clouds. The ways in which massive star formation has altered the structure and kinematics of the Orion Molecular Cloud are discussed. The data to be discussed consists of a large scale map of the CO J=1-0 emission from approximately 3 square degrees of OMC-1. During 1985, the Five College Radio Astronomy Observatory 14M antenna was used to map a 2 deg x 1 deg region centered on alpha(1950) = 5(h)33(m)00(s) delta(1950) = -5 deg 30 min. The region mapped in 1985 covers the well known HII regions M42, M43, and NGC1977, and the CO map contains abundant evidence of the interaction between these regions and the molecular cloud. Indeed, the global structure of the cloud appears to have been strongly influenced by the continuous formation of massive stars within the cloud. Individual instances of some of these features are discussed. There appear to be two classes of features which are indicative of this interaction: CO bright rims and CO holes. During 1986, we have undertaken further mapping of OMC-1 to the south of the region covered by the 1985 map. This portion of the cloud contains significant regions of star formation, but O star formation has not occured and large HII regions have not developed to alter the appearance of the cloud. A detailed map of this region is thus an opportunity to view the structure of the molecular cloud before it has been altered by massive star formation. Preliminary analysis of data obtained in this region suggests that the structure and kinematics of the southern portion of the Orion cloud are indeed dramatically different from those of the region previously mapped. Comparison of the two regions thus supports models of the development of structure in molecular clouds through interaction with the HII regions formed within them

    Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    Get PDF
    We present infrared aperture synthesis maps produced with the upgraded IOTA interferometer. Michelson interferograms on the close binary system Capella (Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to determine the relative position of the binary components with milliarcsecond (mas) precision and to track their movement along the approx. 14 degree arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different Hybrid Mapping and Bispectrum Fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10 and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas and Theta_Ab=5.8 +/- 0.8 mas. To improve the u, v-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    First visual orbit for the prototypical colliding-wind binary WR 140

    Get PDF
    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec
    corecore