140 research outputs found

    The Color-Flavor Transformation and Lattice QCD

    Full text link
    We present the color-flavor transformation for gauge group SU(N_c) and discuss its application to lattice QCD.Comment: 6 pages, Lattice2002(theoretical), typo in Ref.[1] correcte

    Quantum Spin Formulation of the Principal Chiral Model

    Get PDF
    We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-dimensional principal chiral model of classical fields is recovered.Comment: 3pages, LATTICE9

    Quantum Link Models with Many Rishon Flavors and with Many Colors

    Get PDF
    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.Comment: Lattice2001(theorydevelop), poster by O. Baer and talk by B. Schlittgen, 6 page

    Segmentation of PLS-Path Models by Iterative Reweighted Regressions

    Get PDF
    Uncovering unobserved heterogeneity is a requirement to obtain valid results when using the structural equation modeling (SEM) method with empirical data. Conventional segmentation methods usually fail in SEM since they account for the observations but not the latent variables and their relationships in the structural model. This research introduces a new segmentation approach to variance-based SEM. The iterative reweighted regressions segmentation method for PLS (PLS-IRRS) effectively identifies segments in data sets. In comparison with existing alternatives, PLS-IRRS is multiple times faster while delivering the same quality of results. We believe that PLS-IRRS has the potential to become one of the primary choices to address the critical issue of unobserved heterogeneity in PLS-SE

    Partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order

    Full text link
    We calculate the partition function of partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order using the supersymmetry method in the formulation without a singlet particle. We include a nonzero imaginary chemical potential and show that the finite-volume corrections to the low-energy constants Σ\Sigma and FF for the partially quenched partition function, and hence for spectral correlation functions of the Dirac operator, are the same as for the unquenched partition function. We briefly comment on how to minimize these corrections in lattice simulations of QCD. As a side result, we show that the zero-momentum integral in the formulation without a singlet particle agrees with previous results from random matrix theory.Comment: 19 pages, 4 figures; minor changes, to appear in JHE

    Level Repulsion in Constrained Gaussian Random-Matrix Ensembles

    Full text link
    Introducing sets of constraints, we define new classes of random-matrix ensembles, the constrained Gaussian unitary (CGUE) and the deformed Gaussian unitary (DGUE) ensembles. The latter interpolate between the GUE and the CGUE. We derive a sufficient condition for GUE-type level repulsion to persist in the presence of constraints. For special classes of constraints, we extend this approach to the orthogonal and to the symplectic ensembles. A generalized Fourier theorem relates the spectral properties of the constraining ensembles with those of the constrained ones. We find that in the DGUEs, level repulsion always prevails at a sufficiently short distance and may be lifted only in the limit of strictly enforced constraints.Comment: 20 pages, no figures. New section adde

    Data generation for composite-based structural equation modeling methods

    Get PDF
    Examining the efficacy of composite-based structural equation modeling (SEM) features prominently in research. However, studies analyzing the efficacy of corresponding estimators usually rely on factor model data. Thereby, they assess and analyze their performance on erroneous grounds (i.e., factor model data instead of composite model data). A potential reason for this malpractice lies in the lack of available composite model-based data generation procedures for prespecified model parameters in the structural model and the measurements models. Addressing this gap in research, we derive model formulations and present a composite model-based data generation approach. The findings will assist researchers in their composite-based SEM simulation studies
    corecore