1 research outputs found

    Design and analysis of a control system for an optical delay-line circuit used as reconfigurable gain equalizer

    Get PDF
    The design and analysis of a control system for a coherent two-port lattice-form optical delay-line circuit used as reconfigurable gain equalizer is presented. The design of the control system, which is based on a real device model and a least-square optimization method, is described in detail. Analysis on a five-stage device for the 32 possible solutions of phase parameters showed that, for some filter characteristics, the variations in power dissipation can vary up to a factor of 2. Furthermore, the solution selection has influence on the optimization result and number of iterations needed. A sensitivity analysis of the phase parameters showed that the allowable error in the phase parameters should not exceed a standard deviation of /spl pi//500 in order to achieve a total maximal absolute accuracy error not greater than approximately 0.6 dB. A five-stage device has been fabricated using planar lightwave circuit technology that uses the thermooptic effect. Excellent agreement between simulations and measurements has been achieved
    corecore