42 research outputs found

    TRPM6 and TRPM7—Gatekeepers of human magnesium metabolism

    Get PDF
    AbstractHuman magnesium homeostasis primarily depends on the balance between intestinal absorption and renal excretion. Magnesium transport processes in both organ systems – next to passive paracellular magnesium flux – involve active transcellular magnesium transport consisting of an apical uptake into the epithelial cell and a basolateral extrusion into the interstitium. Whereas the mechanism of basolateral magnesium extrusion remains unknown, recent molecular genetic studies in patients with hereditary hypomagnesemia helped gain insight into the molecular nature of apical magnesium entry into intestinal brush border and renal tubular epithelial cells. Patients with Hypomagnesemia with Secondary Hypocalcemia (HSH), a primary defect in intestinal magnesium absorption, were found to carry mutations in TRPM6, a member of the melastatin-related subfamily of transient receptor potential (TRP) ion channels. Before, a close homologue of TRPM6, TRPM7, had been characterized as a magnesium and calcium permeable ion channel vital for cellular magnesium homeostasis. Both proteins share the unique feature of an ion channel fused to a kinase domain with homology to the family of atypical alpha kinases. The aim of this review is to summarize the data emerging from clinical and molecular genetic studies as well as from electrophysiologic and biochemical studies on these fascinating two new proteins and their role in human magnesium metabolism

    Long-read sequencing identifies a common transposition haplotype predisposing for CLCNKB deletions

    Get PDF
    BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general

    Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA

    Get PDF
    Background: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl− cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. Methods: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. Results: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. Conclusion: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies

    Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects

    Get PDF
    Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle’s loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders – the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide–amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide–furosemide type), renin–angiotensin–aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime

    Juvenile onset IIH and CYP24A1 mutations

    No full text
    The term Idiopathic infantile hypercalcemia (IIH) was first introduced almost 70 years ago when symptomatic hypercalcemia developed in children after receiving high doses of vitamin D for the prevention of rickets. The underlying pathophysiology remained unknown until recessive mutations in CYP24A1 encoding Vitamin D3-24-hydroxylase were discovered. The defect in vitamin D degradation leads to an accumulation of active 1,25(OH)2D3 with subsequent hypercalcemia. Enhanced renal calcium excretions lead to hypercalciuria and nephrocalcinosis. Meanwhile, the phenotypic spectrum associated with CYP24A1 mutations has significantly broadened. Patients may present at all age groups with symptoms originating from increased serum calcium levels as well as from increased urinary calcium excretions, i.e. kidney stones. Possible long term sequelae comprise chronic renal failure as well as cardiovascular disease. Here, we present a family with two affected siblings with differing clinical presentation as an example for the phenotypic variability of CYP24A1 defects. Keywords: Idiopathic infantile hypercalcemia, Nephrocalcinosis, Nephrolithiasis, CYP24A1, Vitamin

    mTOR-activating mutations in RRAGD cause kidney tubulopathy and cardiomyopathy (KICA) syndrome [preprint]

    Get PDF
    Background Over the last decaces, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, ±20% of all tubulopathy patients remain without genetic diagnosis. Here, we explore a large multicentric patient cohort with a novel inherited salt-losing tubulopathy, hypomagnesemia and dilated cardiomyopathy (DCM). Methods Whole exome and genome sequencings were performed with various subsequent functional analyses of identified RRAGD variants in vitro. Results In 8 children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt-wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients additionally suffered from DCM requiring heart transplantation in 3 of them. An additional dominant variant in RRAGD was simultaneously identified in eight members of a large family with a similar renal phenotype. RRAGD encodes GTPase RagD mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron include the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro, Conclusions Our findings establish a novel disease phenotype combining kidney tubulopathy and cardiomyopathy (KICA) caused by an activation of mTOR signaling suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function
    corecore