19 research outputs found

    Cerebrospinal fluid biomarkers of brain injury, inflammation and synaptic autoimmunity predict long-term neurocognitive outcome in herpes simplex encephalitis

    Get PDF
    OBJECTIVES: To investigate the correlation between biomarkers of brain injury and long-term neurocognitive outcome, and the interplay with intrathecal inflammation and neuronal autoimmunity, in patients with herpes simplex encephalitis (HSE). METHODS: A total of 53 adult/adolescent HSE patients were included from a prospective cohort in a randomized placebo-controlled trial investigating the effect of a 3-month follow-up treatment with valaciclovir. Study subjects underwent repeated serum/CSF sampling and brain MRI the first 3 months along with cognitive assessment by Mattis Dementia Rating Scale (MDRS) during 24 months. CSF samples were analyzed for biomarkers of brain injury, inflammation and synaptic autoimmunity. The pre-defined primary analysis was the correlation between peak CSF neurofilament protein (NFL), a biomarker of neuronal damage, and MDRS at 24 months. RESULTS: Impaired cognitive performance significantly correlated with NFL levels (rho = -0.36, p = 0.020). Development of IgG anti-N-methyl-D-aspartate receptor (NDMAR) antibodies was associated with a broad and prolonged proinflammatory CSF response. In a linear regression model, lower MDRS at 24 months was associated with previous development of IgG anti-NMDAR (beta = -0.6249, p = 0.024) and age (z-score beta = -0.2784, p = 0.024), but not CSF NFL, which however significantly correlated with subsequent NMDAR autoimmunization (p = 0.006). CONCLUSIONS: Our findings show that NFL levels are predictive of long-term neurocognitive outcome in HSE, and suggest a causative chain of events where brain tissue damage increases the risk of NMDAR autoimmunisation and subsequent prolongation of CSF inflammation. The data provides guidance for a future intervention study of immunosuppressive therapy administered in the recovery phase of HSE

    N-methyl-d-aspartate receptor autoimmunity affects cognitive performance in herpes simplex encephalitis

    No full text
    Objectives: To investigate the prevalence and temporal development of . N-methyl-d-aspartate receptor (NMDAR) autoantibodies in relation to neurocognitive performance in patients with herpes simplex encephalitis (HSE). Methods: This prospective observational study enrolled a total of 49 HSE patients within a randomized controlled trial of valacyclovir. Cerebrospinal fluid and serum samples were drawn in the initial stage of disease, after 2 to 3 weeks and after 3 months. Anti-NMDAR IgG was detected with HEK293 cells transfected with plasmids encoding the NMDA NR1 type glutamate receptor. A batch of neurocognitive tests, including the Mattis Dementia Rating Scale (MDRS), Glasgow Coma Scale (GCS), Reaction Level Scale (RLS85), Mini-Mental State Examination (MMSE) and National Institutes of Health (NIH) stroke scale, was performed during 24 months' follow-up. Results: Anti-NMDAR IgG was detected in 12 of 49 participants. None were antibody positive in the initial stage of disease. In ten of 12 positive cases, specific antibodies were detectable only after 3 months. Notably, the development of NMDAR autoantibodies was associated with significantly impaired recovery of neurocognitive performance. After 24 months' follow-up, the median increase in MDRS total score was 1.5 vs. 10 points in antibody-positive and -negative participants (p=0.018). Conclusions: Anti-NMDAR autoimmunity is a common complication to HSE that develops within 3 months after onset of disease. The association to impaired neurocognitive recovery could have therapeutical implications, as central nervous system autoimmunity is potentially responsive to immunotherapy

    Autonomic Remodeling in the Left Atrium and Pulmonary Veins in Heart Failure

    No full text
    BACKGROUND: Atrial fibrillation (AF) is commonly associated with congestive heart failure (CHF). The autonomic nervous system is involved in the pathogenesis of both AF and CHF. We examined the role of autonomic remodeling in contributing to AF substrate in CHF. METHODS AND RESULTS: Electrophysiological mapping was performed in the pulmonary veins (PVs) and left atrium (LA) in 38 rapid-ventricular paced dogs (CHF group) and 39 controls under the following conditions: vagal stimulation, isoproterenol infusion, β-adrenergic blockade, acetylcholinesterase (AChE) inhibition (physostigmine), parasympathetic blockade, and double autonomic blockade. Explanted atria were examined for nerve density/distribution, muscarinic receptor (MR) and beta-adrenergic receptor (βAR) densities, and AChE activity. In CHF dogs, there was an increase in nerve bundle size, parasympathetic fibers/bundle, and density of sympathetic fibrils and cardiac ganglia, all preferentially in the posterior LA/PVs. Sympathetic hyperinnervation was accompanied by increases in β(1)AR density and in sympathetic effect on ERPs and activation direction. β-adrenergic blockade slowed AF dominant frequency. Parasympathetic remodeling was more complex, resulting in increased AChE activity, unchanged MR density, unchanged parasympathetic effect on activation direction, and decreased effect of vagal stimulation on ERP (restored by AChE inhibition). Parasympathetic blockade markedly decreased AF duration. CONCLUSIONS: In this heart failure model autonomic and electrophysiologic remodeling occurs involving the posterior left atrium and pulmonary veins. Despite synaptic compensation, parasympathetic hyperinnervation contributes significantly to AF maintenance. Parasympathetic and/or sympathetic signaling may be possible therapeutic targets for AF in CHF

    Treatment of intracranial hypertension and aspects on lumbar dural puncture in severe bacterial meningitis - Reply

    Get PDF
    BACKGROUND: Brain stem herniation due to raised intracranial pressure (ICP) is a common cause of mortality in severe bacterial meningitis, but continuous measurements of ICP and the effects of ICP-reducing therapy in these patients have, to our knowledge, not been described. METHODS: During a four-year period, an ICP-monitoring device was implanted in patients admitted to our hospital with severe bacterial meningitis and suspected intracranial hypertension. ICP above 20 mmHg was treated using the Lund Concept, which includes antihypertensive therapy (beta1-antagonist,alpha2-agonist), normalization of the plasma colloid osmotic pressure and the blood volume, and antistress therapy. RESULTS: ICP above 20 mmHg was found in all 12 patients studied. It was effectively reduced in all but two patients, who died. Both patients had a low cerebral perfusion pressure (<10 mmHg), dilated pupils at start of therapy and were beyond recovery. Radiological signs of brain swelling were present in only five patients. Seven patients recovered fully, while mild audiological impairment was observed in two and minor neurological sequelae in one patient. Eight patients showed signs suggesting imminent brain stem herniation before start of ICP-reducing treatment, seven of whom had been subjected to diagnostic lumbar dural puncture shortly before development of the brain stem symptoms. These symptoms gradually regressed after initiation of therapy, and in one patient reversal of brain stem herniation was documented by MRI. CONCLUSIONS: Severe bacterial meningitis can be associated with increased ICP, which can be reduced using the Lund Concept. The high survival rate, the low frequency of sequelae and the reversal of signs of imminent brain stem herniation in these high-risk patients indicated beneficial effects of the intervention. The study confirms earlier observations that lumbar dural puncture is potentially hazardous in patients with intracranial hypertension, because it may trigger brain stem herniation. A normal CT brain scan does not rule out intracranial hypertension

    Pharmacokinetic-Pharmacodynamic Modeling of the Electroencephalogram Effect of Imipenem in Healthy Rats

    No full text
    A pharmacokinetic-pharmacodynamic (PK-PD) modeling approach was developed to investigate the epileptogenic activity of imipenem in rats. Initially, animals received an intravenous infusion of imipenem at a rate of 2.65 mg min(−1) for 30 min. Blood samples were collected for drug assay, and an electroencephalogram (EEG) was recorded during infusion and postinfusion. A dramatic delay was observed between concentrations of imipenem in serum and the EEG effect; this effect was accompanied by tremors and partial seizures. Indirect-effect models failed to describe these data, which were successfully fitted using an effect compartment model. The relationship between effect and concentration at the effect site was best described by a spline function. The elimination rate constant from the effect compartment was severalfold lower than that from the central compartment. The robustness of the model was then confirmed after administering the imipenem dose over 60 and 90 min. In conclusion, the successful PK-PD modeling of the imipenem EEG effect in rats constitutes a major improvement for better prediction of the epileptogenic risk associated with this antibiotic

    Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Get PDF
    <p>Abstract</p> <p>Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during <it>Staphylococcus aureus</it>-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following <it>S. aureus</it> infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1<sup>high</sup> infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.</p
    corecore