4 research outputs found

    Revisiting the anticancer properties of phosphane(9-ribosylpurine-6-thiolato)gold(I) complexes and their 9H-purine precursors

    Get PDF
    New mono- and di-nuclear thio-purine and thio-purine nucleoside gold(I) complexes were synthesized, characterized, and evaluated in vitro for biological activities in comparison to related known purine complexes. By combining known anti-tumoral thio-purines with R(3)PAu moieties as present in auranofin, complexes with enhanced effects and selectivities were obtained, which not only act as cytostatics, but also disrupt tumor-specific processes. Their IC(50) values in cytotoxicity test with tumor cell lines ranged from three-digit nanomolar to single-digit micromolar, revealing a tentative structure–activity relationship (SAR). Both the residues R(2) of the phosphane ligand and R(1) at C2 of the pyrimidine ring had a significant impact on the cytotoxicity. In most cases, the introduction of a ribo-furanosyl group at N9 of the purine led to a distinctly more cytotoxic complex. Most complexes were more active against multi-drug-resistant tumor cells or such lacking functional p53 when compared to the respective untreated wild type cell lines. Some nucleoside complexes displayed an interesting dose-dependent dual mode of action regarding cell cycle arrest and DNA repair mechanism. Some phosphane(purine-6-thiolato)gold (I) complexes had a stronger inhibitory effect on the thioredoxin reductase (TrxR) and on the reactive oxygen species (ROS) generation in cancer cells than is typical of other gold complexes. They also led to DNA fragmentation and showed anti-angiogenic effects. Their stability under test conditions was demonstrated by (77)Se NMR monitoring of an exemplary selenopurine complex. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00775-022-01968-x
    corecore