4 research outputs found

    The South African Bone Marrow Registry (SABMR) and allogeneic bone marrow transplantation

    Get PDF
    In 1939 Osgood et al. reported infusing bone marrow into patients with severe aplastic anaemia without any clinical benefit. Rekers and Coulter attempted to reconstitute marrow function in irradiated dogs by marrow infusions. Both failed because of insufficient irradiation to produce immunosuppression necessary for engraftment. In 1957 Donnall Thomas and co-workers showed that marrow can be collected, stored in significant quantities and safely administered. Marrow transplants remained unsuccessful, however, although patients with refractory leukaemia given supralethal irradiation recovered after marrow infusion from identical twins. Allogeneic marrow transplants usually resulted in failed engraftment, or engraftment followed by lethal graft-versus-host disease (GVHD). Further discoveries were the HLA complex and transplantation antigens, and that successful allogeneic engrafting depends upon donor/recipient histocompatibility

    Human Leukocyte Antigen-A, B, C, DRB1, and DQB1 Allele and Haplotype Frequencies in a subset of 237 donors in the South African Bone Marrow Registry

    Get PDF
    Human leukocyte antigen- (HLA-) A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies were studied in a subset of 237 volunteer bone marrow donors registered at the South African Bone Marrow Registry (SABMR). Hapl-o-Mat software was used to compute allele and haplotype frequencies from individuals typed at various resolutions, with some alleles in multiple allele code (MAC) format. Four hundred and thirty-eight HLA-A, 235 HLA-B, 234 HLA-DRB1, 41 HLA-DQB1, and 29 HLA-C alleles are reported. The most frequent alleles were A02:02g (0.096), B07:02g (0.082), C07:02g (0.180), DQB106:02 (0.157), and DRB115:01 (0.072). The most common haplotype was A03:01g~B07:02g~C07:02g~DQB106:02~DRB115:01 (0.067), which has also been reported in other populations. Deviations from Hardy-Weinberg equilibrium were observed in A, B, and DRB1 loci, with C~DQB1 being the only locus pair in linkage disequilibrium. This study describes allele and haplotype frequencies from a subset of donors registered at SABMR, the only active bone marrow donor registry in Africa. Although the sample size was small, our results form a key resource for future population studies, disease association studies, and donor recruitment strategies

    Human Leukocyte Antigen-A, B, C, DRB1, and DQB1 Allele and Haplotype Frequencies in a Subset of 237 Donors in the South African Bone Marrow Registry

    No full text
    Human leukocyte antigen- (HLA-) A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies were studied in a subset of 237 volunteer bone marrow donors registered at the South African Bone Marrow Registry (SABMR). Hapl-o-Mat software was used to compute allele and haplotype frequencies from individuals typed at various resolutions, with some alleles in multiple allele code (MAC) format. Four hundred and thirty-eight HLA-A, 235 HLA-B, 234 HLA-DRB1, 41 HLA-DQB1, and 29 HLA-C alleles are reported. The most frequent alleles were A∗02:02g (0.096), B∗07:02g (0.082), C∗07:02g (0.180), DQB1∗06:02 (0.157), and DRB1∗15:01 (0.072). The most common haplotype was A∗03:01g~B∗07:02g~C∗07:02g~DQB1∗06:02~DRB1∗15:01 (0.067), which has also been reported in other populations. Deviations from Hardy-Weinberg equilibrium were observed in A, B, and DRB1 loci, with C~DQB1 being the only locus pair in linkage disequilibrium. This study describes allele and haplotype frequencies from a subset of donors registered at SABMR, the only active bone marrow donor registry in Africa. Although the sample size was small, our results form a key resource for future population studies, disease association studies, and donor recruitment strategies
    corecore