19 research outputs found

    The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy

    Get PDF
    The Chinese hamster ovary cell (CHO) is the major host cell factory for recombinant production of biological therapeutics primarily because of its “human-like” glycosylation features. CHO is used for production of several O-glycoprotein therapeutics including erythropoietin, coagulation factors, and chimeric receptor IgG1-Fc-fusion proteins, however, some O-glycoproteins are not produced efficiently in CHO. We have previously shown that the capacity for O-glycosylation of proteins can be one limiting parameter for production of active proteins in CHO. Although the capacity of CHO for biosynthesis of glycan structures (glycostructures) on glycoproteins are well established, our knowledge of the capacity of CHO cells for attaching GalNAc-type O-glycans to proteins (glycosites) is minimal. This type of O-glycosylation is one of the most abundant forms of glycosylation, and it is differentially regulated in cells by expression of a subset of homologous polypeptide GalNAc-transferases. Here, we have genetically engineered CHO cells to produce homogeneous truncated O-glycans, so-called SimpleCells, which enabled lectin enrichment of O-glycoproteins and characterization of the O-glycoproteome. We identified 738 O-glycoproteins (1548 O-glycosites) in cell lysates and secretomes providing the first comprehensive insight into the O-glycosylation capacity of CHO (http://glycomics.ku.dk/o-glycoproteome_db/)

    A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing

    No full text
    Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model for O-glycosylation especially of isolated sites, but serine and to a lesser extent threonine residues are frequently found adjacent to PC processing sites. In the present study we used in vitro enzyme assays and ex vivo cell models to systematically address the boundaries of the region within site-specific O-glycosylation affect PC processing. The results demonstrate that O-glycans within at least ±3 residues of the RXXR furin cleavage site may affect PC processing suggesting that site-specific O-glycosylation is a major co-regulator of PC processing

    Identification of distinct glycoforms of IgA1 in plasma from patients with IgA nephropathy and healthy individuals

    No full text
    Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant, undergalactosylated O-glycans, for example, Tn antigen and its sialylated version, SialylTn (STn), but the mechanisms underlying aberrant O-glycosylation are not well understood. Here we have used serial lectin separation technologies, Western blot, enzymatic modifications, and mass spectrometry to explore whether there are different glycoforms of IgA1 in plasma from patients with IgAN and healthy individuals. Although total plasma IgA in IgAN patients was elevated ∼1.6-fold compared with that in healthy donors, IgA1 in all samples was unexpectedly separable into two distinct glycoforms: one with core 1 based O-glycans, and the other exclusively containing Tn/STn structures. Importantly, Tn antigen present on IgA1 from IgAN patients and controls was convertible into the core 1 structure in vitro by recombinant T-synthase. Our results demonstrate that undergalactosylation of O-glycans in IgA1 is not restricted to IgAN and suggest that in vivo inefficiency of T-synthase toward IgA1 in a subpopulation of B or plasma cells, as well as overall elevation of IgA, may contribute to IgAN pathogenesis
    corecore