12 research outputs found

    Definition of the Immune Parameters Related to COVID-19 Severity

    Get PDF
    A relevant portion of patients with disease caused by the severe acute respiratory syndrome coronavirus 2 (COVID-19) experience negative outcome, and several laboratory tests have been proposed to predict disease severity. Among others, dramatic changes in peripheral blood cells have been described. We developed and validated a laboratory score solely based on blood cell parameters to predict survival in hospitalized COVID-19 patients. We retrospectively analyzed 1,619 blood cell count from 226 consecutively hospitalized COVID-19 patients to select parameters for inclusion in a laboratory score predicting severity of disease and survival. The score was derived from lymphocyte- and granulocyte-associated parameters and validated on a separate cohort of 140 consecutive COVID-19 patients. Using ROC curve analysis, a best cutoff for score of 30.6 was derived, which was associated to an overall 82.0% sensitivity (95% CI: 78–84) and 82.5% specificity (95% CI: 80–84) for detecting outcome. The scoring trend effectively separated survivor and non-survivor groups, starting 2 weeks before the end of the hospitalization period. Patients’ score time points were also classified into mild, moderate, severe, and critical according to the symptomatic oxygen therapy administered. Fluctuations of the score should be recorded to highlight a favorable or unfortunate trend of the disease. The predictive score was found to reflect and anticipate the disease gravity, defined by the type of the oxygen support used, giving a proof of its clinical relevance. It offers a fast and reliable tool for supporting clinical decisions and, most important, triage in terms of not only prioritization but also allocation of limited medical resources, especially in the period when therapies are still symptomatic and many are under development. In fact, a prolonged and progressive increase of the score can suggest impaired chances of survival and/or an urgent need for intensive care unit admission

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    Management of Polypharmacy and Potential Drug–Drug Interactions in Patients with Pulmonary Aspergillosis: A 2-Year Study of a Multidisciplinary Outpatient Clinic

    No full text
    Pulmonary aspergillosis mainly affects elderly patients, patients with pulmonary complications, patients with hematological malignancies, organ transplant recipients, or critically ill patients. Co-morbidities may result in a high rate of polypharmacy and a high risk of potential drug–drug interaction (pDDI)-related antifungal azoles, which are perpetrators of several pharmacokinetic- and pharmacodynamic-driven pDDIs. Here, we report the results of the first 2-year study of an outpatient clinic focusing on the management of therapies in patients with pulmonary aspergillosis. All patients who underwent an outpatient visit from May 2021 to May 2023 were included in this retrospective analysis. A total of 34 patients who were given an azole as an antifungal treatment (53% voriconazole, 41% isavuconazole, and 6% itraconazole) were included. Overall, 172 pDDIs were identified and classified as red- (8%), orange- (74%), or yellow-flag (18%) combinations. We suggested handling polypharmacy in those patients using specific diagnostic and pharmacologic interventions. As expected, red-flag pDDIs involved mainly voriconazole as a perpetrator (71%). However, nearly 30% of red-flag pDDIs were not related to antifungal therapy. These findings highlight the importance of conducting an overall assessment of the pharmacologic burden and the key role played by a multidisciplinary team for the optimization of therapies in patients with pulmonary aspergillosis

    The Evolution of Ketosis: Potential Impact on Clinical Conditions

    No full text
    Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies

    Natural Killer Cells in SARS-CoV-2-Vaccinated Subjects with Increased Effector Cytotoxic CD56dim Cells and Memory-Like CD57+NKG2C+CD56dim Cells

    Get PDF
    Background: The infection and negative effects of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus) virus are mitigated by vaccines. It is unknown whether vaccination has worked by eliciting robust protective innate immune responses with high affinity. Methods: Twenty healthy volunteers received three doses of Comirnaty (Pfizer Australia Pty Ltd.) and were evaluated 9 months after the second vaccination and 1 month after the booster dose. The exclusion criteria were the presence of adverse effects following the vaccination, a history of smoking, and heterologous immunization. The inclusion criteria were the absence of prior Coronavirus Disease (COVID)-19 history, the absence of adverse effects, and the absence of comorbidities. Specific phenotype and levels of CD107a and granzyme production by blood NK (natural killer) cells were analyzed after exposure to SARS-CoV-2 spike antigen (Wuhan, Alpha B.1.1.7, Delta B.1.617.2, and Omicron B1.1.529 variants), and related with anti-SARS-CoV-2 antibody production. Results: The booster dose caused early NK CD56dim subset activation and memory-like phenotype. Conclusions: We report the relevance of the innate immune response, especially NK cells, to SARS-CoV-2 vaccines to guarantee efficient protection against the infection following a booster dose

    Increased sHLA-G Is Associated with Improved COVID-19 Outcome and Reduced Neutrophil Adhesion

    No full text
    Human leukocyte antigen (HLA) is a group of molecules involved in inflammatory and infective responses. We evaluated blood sHLA-E and sHLA-G levels in hospitalized COVID-19 patients with respiratory failure and their relationship with clinical evolution, changes in endothelial activation biomarker profile, and neutrophil adhesion. sHLA-E, sHLA-G, and endothelial activation biomarkers were quantified by ELISA assay in plasma samples. Neutrophil adhesion to endothelium was assessed in the presence/absence of patients’ plasma samples. At admission, plasma levels of sHLA-G and sHLA-E were significantly higher in COVID-19 patients with respiratory failure compared to controls. COVID-19 clinical improvement was associated with increased sHLA-G plasma levels. In COVID-19, but not in control patients, an inverse correlation was found between serum sICAM-1 and E-selectin levels and plasma sHLA-G values. The in vitro analysis of activated endothelial cells confirmed the ability of HLA-G molecules to control sICAM-1 and sE-selectin expression via CD160 interaction and FGF2 induction and consequently neutrophil adhesion. We suggest a potential role for sHLA-G in improving COVID-19 patients’ clinical condition related to the control of neutrophil adhesion to activated endothelium
    corecore