58 research outputs found

    Predicting flux decline of reverse osmosis membranes

    Get PDF
    A mathematical model predicting flux decline of reverse osmosis membranes due to colloidal fouling has been verified. This mathema- tical model is based on the theory of cake or gel filtration and the Modified Fouling Index (MFI). Research was conducted using artificial colloidal solutions and a pilot plant equipped with ultrafiltration membranes. Polystyrene latex spheres, having a size of about 0.05-0.08 μm were used as a foulant.\ud \ud The result of this research was, that the measured and calculated values of flux decline of the ultrafiltration membranes as a function of time agree reasonably well. The difference between the measured and calculated values may be explained by the assumption, that initially blocking filtration occurs instead of cake or gel filtratio

    Limitations, improvements and alternatives of the silt density index

    Get PDF
    Reverse osmosis (RO) membrane systems are widely used in the desalination of water. However, flux decline due to fouling phenomena in RO remains a challenge. To minimize fouling, a reliable index is necessary to predict the fouling potential of the RO feed water. The ASTM introduced the silt density index (SDI) as a standard fouling index to measure the fouling potential due to colloidal and suspended particles. For decades, the SDI is worldwide accepted and applied. There are growing doubts about the predictive value of this parameter. In addition there are several deficiencies observed, affecting the accuracy and reproducibility e.g. no correction factor for temperature, nor for variations in membrane resistance, and no linear correlation with the concentration of colloidal/suspended particles. This paper gives an overview of our work on limitations, improvements and alternatives for the SDI. Firstly, the influence of the applied 0.45 μm test membrane on the SDI will be investigated. Variations in SDI values can be attributed to differences in properties of these membranes. In order to quantify the influence of pressure, temperature and membrane resistance on the SDI a mathematical relation was developed between the SDI and the MFI0.45, assuming cake filtration. In addition, also other fouling mechanisms were incorporated in the model using the well-known blocking laws. Based on a cake filtration fouling mechanism and assuming 100% particle retention, the models were used to normalize the experimental SDI values for temperature, pressure and membrane resistance to the SDI+. By applying this normalization, the results of SDI tests carried out under different conditions and/or with different membranes can be compared easily as was proven experimentally in the lab and at a seawater desalination plant. Finally, an alternative filtration index will be introduced, the volume-based SDI_v. The SDI_v compares the initial flow rate to the flow rate after filtering a standard volume of feed water using MF membranes with an average pore size of 0.45 μm. Our experimental results show that SDI_v is independent of the membrane resistance. In that way, it eliminates most of the disadvantages of the SDI and has great potential to replace the SDI in the fiel

    Circular Polarization Observed in Bioluminescence

    Get PDF

    A classical Over Barrier Model to compute charge exchange between ions and one-optical-electron atoms

    Get PDF
    In this paper we study theoretically the process of electron capture between one-optical-electron atoms (e.g. hydrogenlike or alkali atoms) and ions at low-to-medium impact velocities (v/v_e <= 1) working on a modification of an already developed classical Over Barrier Model (OBM) [V. Ostrovsky, J. Phys. B: At. Mol. Opt. Phys. {\bf 28} 3901 (1995)], which allows to give a semianalytical formula for the cross sections. The model is discussed and then applied to a number of test cases including experimental data as well as data coming from other sophisticated numerical simulations. It is found that the accuracy of the model, with the suggested corrections and applied to quite different situations, is rather high.Comment: 12 pages REVTEX, 5 EPSF figures, submitted to Phys Rev

    Has the Rate of CD4 Cell Count Decline before Initiation of Antiretroviral Therapy Changed over the Course of the Dutch HIV Epidemic among MSM?

    Get PDF
    Introduction:Studies suggest that the HIV-1 epidemic in the Netherlands may have become more virulent, leading to faster disease progression if untreated. Analysis of CD4 cell count decline before antiretroviral therapy (ART) initiation, a surrogate marker for disease progression, may be hampered by informative censoring as ART initiation is more likely with a steeper CD4 cell count decline.Methods:Development of CD4 cell count from 9 to 48 months after seroconversion was analyzed using a mixed-effects model and 2 models that jointly modeled CD4 cell counts and time to censoring event (start ART
    corecore