1,144 research outputs found
Evolution of a beam dynamics model for the transport lines in a proton therapy facility
Despite the fact that the first-order beam dynamics models allow an
approximated evaluation of the beam properties, their contribution is essential
during the conceptual design of an accelerator or beamline. However, during the
commissioning some of their limitations appear in the comparison against
measurements. The extension of the linear model to higher order effects is,
therefore, demanded. In this paper, the effects of particle-matter interaction
have been included in the model of the transport lines in the proton therapy
facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the
performance of the facility, a more precise model was required and has been
developed with the multi-particle open source beam dynamics code called OPAL
(Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo
simulations of Coulomb scattering and energy loss are performed seamless with
the particle tracking. Beside the linear optics, the influence of the passive
elements (e.g. degrader, collimators, scattering foils and air gaps) on the
beam emittance and energy spread can be analysed in the new model. This allows
for a significantly improved precision in the prediction of beam transmission
and beam properties. The accuracy of the OPAL model has been confirmed by
numerous measurements.Comment: 17 pages, 19 figure
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields
Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p
core excitations has been measured at the Heidelberg heavy ion storage ring
TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but
also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n
(2p_j nl)-Rydberg resonances. This result confirms our previous finding for
isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that
experimentally established the sensitivity of DR to ExB fields. In the present
investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+
allowed us to study separately the influence of external fields via the two
series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s ->
2p_{3/2} excitations of the Li-like core, extracting initial slopes and
saturation fields of the enhancement. We find that for Ey > 80 V/cm the field
induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than
for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see
also http://www.strz.uni-giessen.de/~k
Single-photon single ionization of W ions: experiment and theory
Experimental and theoretical results are reported for photoionization of
Ta-like (W) tungsten ions. Absolute cross sections were measured in the
energy range 16 to 245 eV employing the photon-ion merged-beam setup at the
Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV
bandwidth were performed in the 16 to 108 eV range. In addition, the cross
section was scanned at 50 meV resolution in regions where fine resonance
structures could be observed. Theoretical results were obtained from a
Dirac-Coulomb R-matrix approach. Photoionization cross section calculations
were performed for singly ionized atomic tungsten ions in their , =1/2, ground level and the associated
excited metastable levels with =3/2, 5/2, 7/2 and 9/2. Since the ion beams
used in the experiments must be expected to contain long-lived excited states
also from excited configurations, additional cross-section calculations were
performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, =5/2, and for
the F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with = 3/2, 5/2, 7/2 and 9/2.
Given the complexity of the electronic structure of W the calculations
reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B:
At. Mol. & Opt. Phy
Large interfacial spin-orbit torques in layered antiferromagnetic insulator NiPS3/ferromagnet bilayers
Finding efficient ways of manipulating magnetic bits is one of the core goals
in spintronic research. Electrically-generated spin-orbit torques (SOTs) are
good candidates for this and the search for materials capable of generating
highly-efficient SOTs has gained a lot of traction in the recent years. While
antiferromagnet/ferromagnet bilayer structures have been employed extensively
for passive applications, e.g. by using exchange bias fields, their active
properties are not yet widely employed. Here we show the presence of large
interfacial SOTs in bilayer of a ferromagnet and the two-dimensional layered
antiferromagnetic insulator NiPS. We observe a large in-plane damping-like
interfacial torque, showing a torque conductivity of even at room
temperature, comparable to the best devices reported in the literature for
standard heavy-metal-based and topological insulators-based devices.
Additionally, our devices also show an out-of-plane field-like torque arising
from the NiPS/ferromagnet interface, further indicating the presence of an
interfacial spin-orbit coupling in our structures. Temperature-dependent
measurements reveal an increase of the SOTs with a decreasing temperature below
the N\'eel temperature of NiPS (), pointing to
a possible effect of the magnetic ordering on our measured SOTs. Our findings
show the potential of antiferromagnetic insulators and two-dimensional
materials for future spintronic applications.Comment: 19 pages, 3 figures, 1 table. Changed units of the torque normalized
by the electric field from to $\mathrm{nm \, T/V}
K-shell photoionization of ground-state Li-like carbon ions [C]: experiment, theory and comparison with time-reversed photorecombination
Absolute cross sections for the K-shell photoionization of ground-state
Li-like carbon [C(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source. The energy
ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the
[1s(2s2p)P]P, [1s(2s2p)P]P and [(1s2s)S 3p]P
resonances, respectively, were investigated using resolving powers of up to
6000. The autoionization linewidth of the [1s(2s2p)P]P resonance was
measured to be meV and compares favourably with a theoretical result
of 26 meV obtained from the intermediate coupling R-Matrix method. The present
photoionization cross section results are compared with the outcome from
photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table
- …