632 research outputs found

    Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured resonance strengths and energies for dielectronic recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3 core excitations in the electron-ion collision energy range 0-45 eV. All measurements were carried out using the heavy-ion Test Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor agreement between our experimental and theoretical resonance energies and strengths. From 25 to 42 eV we find good agreement between the two for resonance energies. But in this energy range the theoretical resonance strengths are ~ 31% larger than the experimental results. This is larger than our estimated total experimental uncertainty in this energy range of +/- 26% (at a 90% confidence level). Above 42 eV the difference in the shape between the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly to the nl dependence of the detection probabilities of high Rydberg states in the experiment. We have used our measurements, supplemented by our AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is estimated to be accurate to better than +/- 29% (at a 90% confidence level) for k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted to form in photoionized plasmas, significant discrepancies are found between our experimentally-derived rate coefficient and previously published theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller than our experimental results over this temperature range

    Astrophysical Relevance of Storage-Ring Electron-Ion Recombination Experiments

    Full text link
    The relevance of storage-ring electron-ion recombination experiments for astrophysics is outlined. In particular, the role of low-energy dielectronic-recombination resonances is discussed. A bibliographic compilation of electron-ion recombination measurements with cosmically abundant ions is provided.Comment: 8 pages, 3 figures, 1 table, 77 references, Proceedings of the 14th International Conference on the Physics of Highly Charged Ions, Cofu, Tokyo, Septmber 1-5, 2008, to be published in J. Phys. Conf. Se

    K-shell photoionization of ground-state Li-like carbon ions [C3+^{3+}]: experiment, theory and comparison with time-reversed photorecombination

    Full text link
    Absolute cross sections for the K-shell photoionization of ground-state Li-like carbon [C3+^{3+}(1s2^22s 2^2S)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source. The energy ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the [1s(2s2p)3^3P]2^2P, [1s(2s2p)1^1P]2^2P and [(1s2s)3^3S 3p]2^2P resonances, respectively, were investigated using resolving powers of up to 6000. The autoionization linewidth of the [1s(2s2p)1^1P]2^2P resonance was measured to be 27±527 \pm 5 meV and compares favourably with a theoretical result of 26 meV obtained from the intermediate coupling R-Matrix method. The present photoionization cross section results are compared with the outcome from photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table

    State-resolved valence shell photoionization of Be-like ions: experiment and theory

    Full text link
    High-resolution photoionization experiments were carried out using beams of Be-like C2+^{2+}, N3+^{3+}, and O4+^{4+} ions with roughly equal populations of the 1^1S ground-state and the 3^3Po^o manifold of metastable components. The energy scales of the experiments are calibrated with uncertainties of 1 to 10 meV depending on photon energy. Resolving powers beyond 20,000 were reached allowing for the separation of contributions from the individual metastable 3^3P0o^o_0, 3^3P1o^o_1, and 3^3P2o^o_2 states. The measured data compare favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table

    Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}

    Get PDF
    Isotope shifts in dielectronic recombination spectra were studied for Li-like ^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV (stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of ^{142,150}\delta = -1.36(1)(3) fm^2. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review Letter

    Photoionization of the fullerene ion C60+

    Full text link
    Photoionization cross section of the fullerene ion C60+ has been calculated within a single-electron approximation and also by using a consistent many-body theory accounting for many-electron correlations.Comment: 8 pages, 3 figure

    Electron-ion recombination measurements motivated by AGN X-ray absorption features: Fe XIV forming Fe XIII

    Get PDF
    Recent spectroscopic models of active galactic nuclei (AGN) have indicated that the recommended electron-ion recombination rate coefficients for iron ions with partially filled M-shells are incorrect in the temperature range where these ions form in photoionized plasmas. We have investigated this experimentally for Fe XIV forming Fe XIII. The recombination rate coefficient was measured employing the electron-ion merged beams method at the Heidelberg heavy-ion storage-ring TSR. The measured energy range of 0-260 eV encompassed all dielectronic recombination (DR) 1s2 2s2 2p6 3l 3l' 3l'' nl''' resonances associated with the 3p1/2 -> 3p3/2, 3s -> 3p, 3p -> 3d and 3s -> 3d core excitations within the M-shell of the Fe XIV 1s2 2s2 2p6 3s2 3p parent ion. This range also includes the 1s2 2s2 2p6 3l 3l' 4l'' nl''' resonances associated with 3s -> 4l'' and 3p -> 4l'' core excitations. We find that in the temperature range 2--14 eV, where Fe XIV is expected to form in a photoionized plasma, the Fe XIV recombination rate coefficient is orders of magnitude larger than previously calculated values.Comment: 4 pages, 4 figures, 1 table submitted to Ap
    corecore