632 research outputs found
Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations
We have measured resonance strengths and energies for dielectronic
recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3
core excitations in the electron-ion collision energy range 0-45 eV. All
measurements were carried out using the heavy-ion Test Storage Ring at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also
carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the
AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor
agreement between our experimental and theoretical resonance energies and
strengths. From 25 to 42 eV we find good agreement between the two for
resonance energies. But in this energy range the theoretical resonance
strengths are ~ 31% larger than the experimental results. This is larger than
our estimated total experimental uncertainty in this energy range of +/- 26%
(at a 90% confidence level). Above 42 eV the difference in the shape between
the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly
to the nl dependence of the detection probabilities of high Rydberg states in
the experiment. We have used our measurements, supplemented by our
AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate
coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is
estimated to be accurate to better than +/- 29% (at a 90% confidence level) for
k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted
to form in photoionized plasmas, significant discrepancies are found between
our experimentally-derived rate coefficient and previously published
theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller
than our experimental results over this temperature range
Astrophysical Relevance of Storage-Ring Electron-Ion Recombination Experiments
The relevance of storage-ring electron-ion recombination experiments for
astrophysics is outlined. In particular, the role of low-energy
dielectronic-recombination resonances is discussed. A bibliographic compilation
of electron-ion recombination measurements with cosmically abundant ions is
provided.Comment: 8 pages, 3 figures, 1 table, 77 references, Proceedings of the 14th
International Conference on the Physics of Highly Charged Ions, Cofu, Tokyo,
Septmber 1-5, 2008, to be published in J. Phys. Conf. Se
K-shell photoionization of ground-state Li-like carbon ions [C]: experiment, theory and comparison with time-reversed photorecombination
Absolute cross sections for the K-shell photoionization of ground-state
Li-like carbon [C(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source. The energy
ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the
[1s(2s2p)P]P, [1s(2s2p)P]P and [(1s2s)S 3p]P
resonances, respectively, were investigated using resolving powers of up to
6000. The autoionization linewidth of the [1s(2s2p)P]P resonance was
measured to be meV and compares favourably with a theoretical result
of 26 meV obtained from the intermediate coupling R-Matrix method. The present
photoionization cross section results are compared with the outcome from
photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table
State-resolved valence shell photoionization of Be-like ions: experiment and theory
High-resolution photoionization experiments were carried out using beams of
Be-like C, N, and O ions with roughly equal populations of
the S ground-state and the P manifold of metastable components. The
energy scales of the experiments are calibrated with uncertainties of 1 to 10
meV depending on photon energy. Resolving powers beyond 20,000 were reached
allowing for the separation of contributions from the individual metastable
P, P, and P states. The measured data compare
favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table
Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}
Isotope shifts in dielectronic recombination spectra were studied for Li-like
^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance
positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV
(stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j
transitions were deduced. An evaluation of these values within a full QED
treatment yields a change in the mean-square charge radius of ^{142,150}\delta
= -1.36(1)(3) fm^2. The approach is conceptually new and combines the
advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review
Letter
Photoionization of the fullerene ion C60+
Photoionization cross section of the fullerene ion C60+ has been calculated
within a single-electron approximation and also by using a consistent many-body
theory accounting for many-electron correlations.Comment: 8 pages, 3 figure
Electron-ion recombination measurements motivated by AGN X-ray absorption features: Fe XIV forming Fe XIII
Recent spectroscopic models of active galactic nuclei (AGN) have indicated
that the recommended electron-ion recombination rate coefficients for iron ions
with partially filled M-shells are incorrect in the temperature range where
these ions form in photoionized plasmas. We have investigated this
experimentally for Fe XIV forming Fe XIII. The recombination rate coefficient
was measured employing the electron-ion merged beams method at the Heidelberg
heavy-ion storage-ring TSR. The measured energy range of 0-260 eV encompassed
all dielectronic recombination (DR) 1s2 2s2 2p6 3l 3l' 3l'' nl''' resonances
associated with the 3p1/2 -> 3p3/2, 3s -> 3p, 3p -> 3d and 3s -> 3d core
excitations within the M-shell of the Fe XIV 1s2 2s2 2p6 3s2 3p parent ion.
This range also includes the 1s2 2s2 2p6 3l 3l' 4l'' nl''' resonances
associated with 3s -> 4l'' and 3p -> 4l'' core excitations. We find that in the
temperature range 2--14 eV, where Fe XIV is expected to form in a photoionized
plasma, the Fe XIV recombination rate coefficient is orders of magnitude larger
than previously calculated values.Comment: 4 pages, 4 figures, 1 table submitted to Ap
Recommended from our members
Dielectronic Recombination In Active Galactic Nuclei
XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII
- …