5 research outputs found

    Longevity of a brain-computer interface for amyotrophic lateral sclerosis

    Get PDF
    The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation. At-home use ended when control of the brain-computer interface became unreliable. No signs of technical malfunction were found. Instead, the amplitude of neural signals declined, and computed tomographic imaging revealed progressive atrophy, which suggested that ALS-related neurodegeneration ultimately rendered the brain-computer interface ineffective after years of successful use, although alternative explanations are plausible. (Funded by the National Institute on Deafness and Other Communication Disorders and others; ClinicalTrials.gov number, NCT02224469.)

    Using fMRI to localize target regions for implanted brain-computer interfaces in locked-in syndrome

    Get PDF
    OBJECTIVE: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome. METHODS: Three people with locked-in syndrome were implanted with a chronic, fully implantable ECoG-BCI system. We compared pre-surgical fMRI activity with post-implantation ECoG activity from areas known to be active and inactive during attempted hand movement (sensorimotor hand region and dorsolateral prefrontal cortex, respectively). RESULTS: Results showed a spatial match between fMRI activity and changes in ECoG low and high frequency band power (10 - 30 and 65 - 95 Hz, respectively) during attempted movement. Also, we found that fMRI can be used to select a sub-set of electrodes that show strong task-related signal changes that are therefore likely to generate adequate BCI control. CONCLUSIONS: Our findings indicate that fMRI is a useful non-invasive tool for the pre-surgical workup of BCI implant candidates. SIGNIFICANCE: If these results are confirmed in more BCI studies, fMRI might be used for more efficient surgical BCI procedures with focused cortical coverage and lower participant burden

    Stability of ECoG high gamma signals during speech and implications for a speech BCI system in an individual with ALS: a year-long longitudinal study

    No full text
    OBJECTIVE: Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in ALS and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period. APPROACH: ECoG signals were recorded by an ECoG array implanted over the ventral sensorimotor cortex (vSMC) in a clinical trial participant with ALS. Because ECoG-based speech decoding has most often relied on broadband high gamma signal changes relative to baseline (non-speech) conditions, we studied longitudinal changes of high gamma band (HG) power at baseline and during speech, and we compared these with residual high frequency (HF) noise levels at baseline. Stability was further assessed by longitudinal measurements of signal-to-noise ratio (SNR), activation ratio (ActR), and peak speech-related HG response magnitude (HG response peaks). Lastly, we analyzed the stability of the event-related HG power changes (HG responses) for individual syllables at each electrode. MAIN RESULTS: We found that speech-related ECoG signal responses were stable over a range of syllables activating different articulators for the first year after implantation. SIGNIFICANCE: Together, our results indicate that ECoG can be a stable recording modality for long-term speech BCI systems for those living with severe paralysis. CLINICALTRIALS: gov, registration number NCT03567213

    Methodological Recommendations for Studies on the Daily Life Implementation of Implantable Communication-Brain–Computer Interfaces for Individuals With Locked-in Syndrome

    No full text
    Implantable brain–computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research
    corecore