84 research outputs found
Technique of anterior colporrhaphy: a Dutch evaluation
Contains fulltext :
96395.pdf (publisher's version ) (Closed access)INTRODUCTION AND HYPOTHESIS: To evaluate the variation in techniques of anterior colporrhaphy among members of the Dutch Urogynecologic Society. METHODS: A questionnaire evaluating the technique of anterior colporrhaphy, preoperative and postoperative care, and use of the POP-Q score was sent out by e-mail. RESULTS: One hundred thirty-three completed questionnaires were received. The response rate was 65%. There are large variations in incisions, use of hydrodissection, method of plication, and excision of redundant vaginal epithelium. The urinary catheter was generally removed on day 2 after surgery and the vaginal pack on day 1. Less than half of the respondents used the POP-Q score routinely. CONCLUSIONS: Dutch gynecologists use a variety of surgical techniques to operate on a cystocele. This suggests that there is no widely accepted opinion on the best surgical approach. The lack of differentiation between central and lateral defects is striking and in contrast with the, mostly, American literature
Growth of nanostructures by cluster deposition : a review
This paper presents a comprehensive analysis of simple models useful to
analyze the growth of nanostructures obtained by cluster deposition. After
detailing the potential interest of nanostructures, I extensively study the
first stages of growth (the submonolayer regime) by kinetic Monte-Carlo
simulations. These simulations are performed in a wide variety of experimental
situations : complete condensation, growth with reevaporation, nucleation on
defects, total or null cluster-cluster coalescence... The main scope of the
paper is to help experimentalists analyzing their data to deduce which of those
processes are important and to quantify them. A software including all these
simulation programs is available at no cost on request to the author. I
carefully discuss experiments of growth from cluster beams and show how the
mobility of the clusters on the surface can be measured : surprisingly high
values are found. An important issue for future technological applications of
cluster deposition is the relation between the size of the incident clusters
and the size of the islands obtained on the substrate. An approximate formula
which gives the ratio of the two sizes as a function of the melting temperature
of the material deposited is given. Finally, I study the atomic mechanisms
which can explain the diffusion of the clusters on a substrate and the result
of their mutual interaction (simple juxtaposition, partial or total
coalescence...)Comment: To be published Rev Mod Phys, Oct 99, RevTeX, 37 figure
HighP–TNano-Mechanics of Polycrystalline Nickel
We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni
- …